RabbitMQ的应用问题

一、幂等性保障

幂等性是数学和计算机科学中某些运算的性质, 它们可以被多次应⽤, ⽽不会改变初始应⽤的结果

数学上的幂等性:

f(x)=f(f(x))   |x|

数据库操作幂等性:

       数据库的 select 操作. 不同时间两次查询的结果可能不同, 但是这个操作是符合幂等性的. 幂等性指的是对资源的影响, ⽽不是返回结果. 查询操作对数据资源本⾝不会产⽣影响, 之所以结果不同, 可能是因为两次查询之间有其他操作对资源进⾏了修改. 

应用上的幂等性:

       在应⽤程序中, 幂等性就是指对⼀个系统进⾏重复调⽤(相同参数), 不论请求多少次, 这些请求对系统的影响都是相同的效果

非幂等性:⽐如  i++ 这个操作, 就是⾮幂等性的. 如果调⽤⽅没有控制好逻辑, ⼀次流程重复调⽤好⼏次, 结果就会不同.

MQ的幂等性:

       对于MQ⽽⾔, 幂等性是指同⼀条消息, 多次消费, 对系统的影响是相同的.⼀般消息中间件的消息传输保障分为三个层级.
1. At most once:最多⼀次. 消息可能会丢失,但绝不会重复传输.
2. At least once:最少⼀次. 消息绝不会丢失,但可能会重复传输.
3. Exactly once:恰好⼀次. 每条消息肯定会被传输⼀次且仅传输⼀次.
RabbitMQ⽀持"最多⼀次"和"最少⼀次".
对于"恰好⼀次", ⽬前RabbitMQ还做不到, 不仅是RabbitMQ, ⽬前市⾯上主流的消息中间件, 都做不到这⼀点.

对于可靠性要求⽐较⾼的场景, 建议使⽤"最少⼀次", 以防⽌消息丢失. "最多⼀次" 会因为消息发送过程中, ⽹络问题, 消费出现异常等种种原因, 导致消息丢失.
以下场景可能会导致消息发送重复(包含但不限于)
 ①发送时消息重复: 当⼀条消息已被成功发送到服务端并完成持久化, 此时出现了⽹络闪断或者客⼾端宕机, 导致服务端对客⼾端应答失败. 如果此时Producer意识到消息发送失败并尝试再次发送消息, Consumer后续会收到两条内容相同并且Message ID也相同的消息.
② 投递时消息重复: 消息消费的场景下, 消息已投递到Consumer并完成业务处理, 当客⼾端给服务端反馈应答的时候⽹络闪断. 为了保证消息⾄少被消费⼀次, 云消息队列 RabbitMQ 版的服务端在将⽹络恢复后再次尝试投递之前已被处理过的消息, Consumer后续会收到两条内容相同并且Message ID也相同的消息.

但是"最少⼀次", 就会造成⼀个问题, 消费端会收到重复的消息, 也会造成对同⼀条消息进⾏多次处理. ⼀些不重要的业务还好⼀点, 对于重要的业务, 如果不对重复的消息进⾏处理, 会造成严重事故

MQ消费者的幂等性的解决⽅法, ⼀般有以下⼏种:

全局唯⼀ID
1. 为每条消息分配⼀个唯⼀标识符, ⽐如UUID或者MQ消息中的唯⼀ID,但是⼀定要保证唯⼀性.
2. 消费者收到消息后, 先⽤该id判断该消息是否已经消费过, 如果已经消费过, 则放弃处理.
3. 如果未消费过, 消费者开始消费消息, 业务处理成功后, 把唯⼀ID保存起来(数据库或Redis等)
可以使⽤Redis 的原⼦性操作setnx来保证幂等性, 将唯⼀ID作为key放到redis中 (SETNX
messageID 1) . 返回1, 说明之前没有消费过, 正常消费. 返回0, 说明这条消息之前已消费过, 抛
弃.

业务逻辑判断
在业务逻辑层⾯实现消息处理的幂等性.
例如: 通过检查数据库中是否已存在相关数据记录, 或者使⽤乐观锁机制来避免更新已被其他事务更改的数据, 再或者在处理消息之前, 先检查相关业务的状态, 确保消息对应的操作尚未执⾏, 然后才进⾏处理, 具体根据业务场景来处理

二、顺序性保障

消息的顺序性是指消费者消费的消息和⽣产者发送消息的顺序是⼀致的.(⽐如⽣产者发送的消息分别是msg1, msg2, msg3, 那么消费者也是按照msg1, msg2, msg3的顺序进⾏消费的.)

很多业务场景下, 消息的消费是不⽤保证顺序的, ⽐如使⽤MQ实现订单超时的处理. 但有些业务场景, 可能存在多个消息顺序处理的情况. ⽐如⽤⼾信息修改, 对同⼀个⽤⼾的同⼀个资料进⾏修改, 需要保证消息的顺序.

⼀些资料显⽰RabbitMQ的消息能够保障顺序性, 这是不严谨的. 在不考虑消息丢失, ⽹络故障等异常的情况下, 如果只有⼀个消费者, 最好也只有⼀个⽣产者的情况下, 是可以保证消息的顺序性. 如果有多个⽣产者同时发送消息, ⽆法确定消息到达RabbitMQ Broker的前后顺序, 也就⽆法验证消息的顺序性.哪些情况可能会打破RabbitMQ的顺序性呢? 下⾯介绍⼏种常⻅的场景:
1. 多个消费者: 当队列配置了多个消费者时, 消息可能会被不同的消费者并⾏处理, 从⽽导致消息处理的顺序性⽆法保证.
2. ⽹络波动或异常: 在消息传递过程中, 如果出现⽹络波动或异常, 可能会导致消息确认(ACK) 丢失, 从⽽使得消息被重新⼊队和重新消费, 造成顺序性问题.
3. 消息重试:如果消费者在处理消息后未能及时发送确认, 或者确认消息在传输过程中丢失, 那么MQ可能会认为消息未被成功消费⽽进⾏重试, 这也可能导致消息处理的顺序性问题.
4. 消息路由问题: 在复杂的路由场景中, 消息可能会根据路由键被发送到不同的队列, 从⽽⽆法保证全局的顺序性.
5. 死信队列: 消息因为某些原因(如消费端拒绝消息)被放⼊死信队列, 死信队列被消费时, ⽆法保证消息的顺序和⽣产者发送消息的顺序⼀致

顺序保障方案:

消息顺序性保障分为: 局部顺序性保证和全局顺序性保证.

局部顺序性通常指的是在单个队列内部保证消息的顺序. 全局顺序性是指在多个队列或多个消费者之间保证消息的顺序.

注:①在实际应⽤中, 全局顺序性很难实现, 可以考虑使⽤业务逻辑来保证顺序性, ⽐如在消息中嵌⼊序列号,并在消费端进⾏排序处理. 相对⽽⾔, 局部顺序性更常⻅, 也更容易实现.
②RabbitMQ作为⼀个分布式消息队列, 主要优化的是吞吐量和可⽤性, ⽽不是严格的顺序性保证.如 果业务场景确实需要严格的消息顺序, 可能需要在应⽤层⾯进⾏额外的设计和实现

顺序性保证的常⻅策略

1. 单队列单消费者
最简单的⽅法是使⽤单个队列, 并由单个消费者进⾏处理. 同⼀个队列中的消息是先进先出的, 这是
RabbitMQ来帮助我们保证的.
2. 分区消费
单个消费者的吞吐太低了, 当需要多个消费者以提⾼处理速度时, 可以使⽤分区消费. 把⼀个队列分割成多个分区, 每个分区由⼀个消费者处理, 以此来保持每个分区内消息的顺序性(⽐如⽤⼾修改资料后, 发送⼀条⽤⼾资料消息. 消费者在处理时, 需要保证消息发送的先后顺序,但这种场合并不需要保证全局顺序. 只需要保证同⼀个⽤⼾的消息顺序消费就可以. 这时候就可以采⽤把消费按照⼀定的规则, 分为多个区, 每个分区由⼀个消费者处理
RabbitMQ本⾝并不⽀持分区消费, 需要业务逻辑去实现, 或者借助spring-cloud-stream来实现)    3. 消息确认机制
使⽤⼿动消息确认机制, 消费者在处理完⼀条消息后, 显式地发送确认, 这样RabbitMQ才会移除并继续发送下⼀条消息.
4. 业务逻辑控制
在某些情况下, 即使消息乱序到达, 也可以在业务逻辑层⾯实现顺序控制. ⽐如通过在消息中嵌⼊序列号, 并在消费时根据这些信息来处理

三、消息挤压问题

原因分析
消息积压是指在消息队列(如RabbitMQ)中, 待处理的消息数量超过了消费者处理能⼒, 导致消息在队列中不断堆积的现象.

通常有以下⼏种原因:
1. 消息⽣产过快: 在⾼流量或者⾼负载的情况下, ⽣产者以极⾼的速率发送消息, 超过了消费者的处理能⼒.
2. 消费者处理能⼒不⾜: 消费者处理处理消息的速度跟不上消息⽣产的速度, 也会导致消息在队列中积压.
可能原因有:
1) 消费端业务逻辑复杂, 耗时⻓
2) 消费端代码性能低
3) 系统资源限制, 如CPU、内存、磁盘I/O等也会限制消费者处理消息的效率.
4) 异常处理处理不当. 消费者在处理消息时出现异常, 导致消息⽆法被正确处理和确认.
3. ⽹络问题: 因为⽹络延迟或不稳定, 消费者⽆法及时接收或确认消息, 最终导致消息积压
4. RabbitMQ 服务器配置偏低
消息积压可能会导致系统性能下降, 影响⽤⼾体验, 甚⾄导致系统崩溃. 因此, 及时发现消息积压并解决对于维护系统稳定性⾄关重要.

解决⽅案
遇到消息积压时, ⾸先要分析消息积压造成的原因. 根据原因来调整策略.
主要从以下⼏个⽅⾯来解决:
1. 提⾼消费者效率
a. 增加消费者实例数量, ⽐如新增机器
b. 优化业务逻辑, ⽐如使⽤多线程来处理业务
c. 设置prefetchCount, 当⼀个消费者阻塞时, 消息转发到其他未阻塞的消费者.
d. 消息发⽣异常时, 设置合适的重试策略, 或者转⼊到死信队列
2. 限制⽣产者速率. ⽐如流量控制, 限流算法等.
a. 流量控制: 在消息⽣产者中实现流量控制逻辑, 根据消费者处理能⼒动态调整发送速率
b. 限流: 使⽤限流⼯具, 为消息发送速率设置⼀个上限
c. 设置过期时间. 如果消息过期未消费, 可以配置死信队列, 以避免消息丢失, 并减少对主队列的压

3. 资源与配置优化. ⽐如升级RabbitMQ服务器的硬件, 调整RabbitMQ的配置参数等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1551285.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

profinet转Ethernet网关在工业现场如何应用

一、项目背景 在某工业自动化系统中,现有的设备采用Profinet通信协议,而新引入的一些智能设备只支持Ethernet通信。为了实现不同协议设备之间的互联互通,决定采用开疆智能Profinet转Ethernet网关来解决通信兼容性问题。 二、硬件准备 1.支持P…

《C++》解密--单链表

目录 一、概念与结构 二、实现单链表 三、链表的分类 四、单链表算法题 一、概念与结构 1、节点 结点的组成主要有:当前结点要保存的数据和保存下一个节点的地址(指针变量) 图中指针变量plist保存的是第一个结点的地址,我们称p…

极限电流型氧传感器的工作原理以及有哪些应用场景?

极限电流型氧传感器的工作原理: 极限电流型氧传感器的工作原理基于稳定ZrO2固体电解质的氧泵作用。在已稳定化ZrO2两侧被覆铂电极,阴极侧用有气体扩散孔的罩接合,形成阴极空腔。在一定的温度下,当ZrO2电极两侧加一定电压时&#…

【渗透实战系列】|App渗透 ,由sql注入、绕过人脸识别、成功登录APP

涉及知识点 1、APP抓包和逆向破解加密算法; 2、解密参数,寻找注入点; 3、Union注入构造万能密码; 4、利用忘记密码功能,burpsuite爆破用户名; 5、解密短信验证数据包,绕过验证码,成功…

Docker笔记-Docker磁盘空间清理

无用的容器指的是已经停止运行且处于非活跃状态的容器。无用的镜像包括没有被任何容器使用的镜像&#xff0c;或者是被标记为"<none>"的镜像&#xff0c;通常是构建过程中产生的无标签镜像。 通过执行 docker container ls -a 和 docker image ls -a 命令&…

2024年软考——系统规划与管理师30天冲刺学习指南!!!

距离2024下半年软考系统规划与管理师考试已经只剩一个多月了&#xff0c;还没有开始备考的小伙伴赶紧行动起来。为了帮助大家更好的冲刺学习&#xff0c;特此提供一份考前30天学习指南。本指南包括考情分析、学习规划、冲刺攻略三个部分&#xff0c;可以参考此指南进行最后的复…

墙绘艺术在线交易平台:SpringBoot技术详解

4 系统设计 墙绘产品展示交易平台的设计方案比如功能框架的设计&#xff0c;比如数据库的设计的好坏也就决定了该系统在开发层面是否高效&#xff0c;以及在系统维护层面是否容易维护和升级&#xff0c;因为在系统实现阶段是需要考虑用户的所有需求&#xff0c;要是在设计阶段没…

【视频目标分割-2024CVPR】Putting the Object Back into Video Object Segmentation

Cutie 系列文章目录1 摘要2 引言2.1背景和难点2.2 解决方案2.3 成果 3 相关方法3.1 基于记忆的VOS3.2对象级推理3.3 自动视频分割 4 工作方法4.1 overview4.2 对象变换器4.2.1 overview4.2.2 Foreground-Background Masked Attention4.2.3 Positional Embeddings 4.3 Object Me…

RabbitMQ的高级特性-死信队列

死信(dead message) 简单理解就是因为种种原因, ⽆法被消费的信息, 就是死信. 有死信, ⾃然就有死信队列. 当消息在⼀个队列中变成死信之后&#xff0c;它能被重新被发送到另⼀个交换器 中&#xff0c;这个交换器就是DLX( Dead Letter Exchange ), 绑定DLX的队列, 就称为死信队…

EasyX与少儿编程:轻松上手的编程启蒙工具

EasyX&#xff1a;开启少儿编程的图形化启蒙之路 随着科技发展&#xff0c;编程逐渐成为孩子们教育中重要的一部分。如何让孩子在编程启蒙阶段更容易接受并激发他们的兴趣&#xff0c;成为许多家长和老师关心的问题。相比起传统的编程语言&#xff0c;图形化编程工具显得更直观…

【ehr】人事招聘薪资绩效考勤一体化管理系统(源码)

一、项目介绍 一款全源码可二开&#xff0c;可基于云部署、私有部署的企业级数字化人力资源管理系统&#xff0c;涵盖了招聘、人事、考勤、绩效、社保、酬薪六大模块&#xff0c;解决了从人事招聘到酬薪计算的全周期人力资源管理&#xff0c;符合当下大中小型企业组织架构管理运…

2k1000LA loongnix 安装java

问题&#xff1a; 客户 需要在 loongnix 上 使用 java 的程序。 情况说明&#xff1a; 使用 apt get 是无法 安装java 的。 按照的资料就行。 首先是 下载 loongarch64 的 java 的压缩包。这个我已经下载下来了。 社区下载地址&#xff1a; http://www.loongnix.cn/zh/api/…

书生大模型实战训练营 第三期 入门岛

1.Linux 任务一 完成SSH连接与端口映射并运行hello_world.py vscode自带的端口设置功能很方便 2.Python 任务一 实现wordcount函数 任务二 vscode 单步调试

【递归】9. leetcode 104 二叉树的最大深度

1 题目描述 题目链接&#xff1a;二叉树的最大深度 2 解答思路 递归分为三步&#xff0c;接下来就按照这三步来思考问题 第一步&#xff1a;挖掘出相同的子问题 &#xff08;关系到具体函数头的设计&#xff09; 第二步&#xff1a;只关心具体子问题做了什么 &#xff0…

物联网智能设备:未来生活的变革者

文章目录 引言什么是物联网智能设备&#xff1f;技术架构应用场景挑战与解决方案未来发展趋势结论 引言 随着科技的迅猛发展&#xff0c;物联网&#xff08;IoT&#xff09;正在改变我们生活的方方面面。从智能家居到工业自动化&#xff0c;物联网智能设备正在逐步融入我们的日…

四款视频剪辑工具使用感受与推荐:

大家好&#xff01;今天咱们来聊聊视频剪辑工具。随着短视频的火热&#xff0c;越来越多的小伙伴开始涉足视频剪辑领域&#xff0c;那到底哪款工具更适合你呢&#xff1f;接下来&#xff0c;就让我为大家分享一下我使用过的几款视频剪辑工具的体验和感受吧&#xff01; 一、福昕…

[linux 驱动]input输入子系统详解与实战

目录 1 描述 2 结构体 2.1 input_class 2.2 input_dev 2.4 input_event 2.4 input_dev_type 3 input接口 3.1 input_allocate_device 3.2 input_free_device 3.3 input_register_device 3.4 input_unregister_device 3.5 input_event 3.6 input_sync 3.7 input_se…

如何做好接口测试?||关于京东平台商品API接口测试

探讨主题&#xff1a;如何做好接口测试&#xff1f; 一、接口测试简介 1、什么是接口测试&#xff1f; 接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换&#xff0c;传递和控制…

Clocking System

文章目录 1. 介绍2. 时钟源2.1 scillator Circuit (OSC)2.1.1 外部时钟输入模式2.1.2 外部晶体/陶瓷谐振器模式2.1.3 振荡器的配置2.1.4 Oscillator Watchdog 2.2 Back-up Clock 3. 锁相环&#xff08;PLL&#xff09;3.1 系统锁相环3.1.1 Features3.1.2 框图 3.2.外设锁相环3.…

普中51单片机

参考&#xff1a;51单片机快速入门教程2022&#xff08;普中51开发板A2新版&#xff09;--绍兴文理学院元培学院《单片机原理与应用》课程建设_哔哩哔哩_bilibili 1.以管理员启动&#xff0c;破解