PyTorch构建卷积神经网络(CNN)训练模型:分步指南

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【基于深度学习的太阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 步骤1:导入所需的库
  • 步骤2:定义卷积神经网络架构
    • 卷积层
    • 池化层
  • 步骤3:硬件设置
  • 步骤4:定义超参数
  • 第5步:加载数据
  • 步骤6:初始化网络
  • 步骤7:定义损失和优化器
  • 步骤8:训练网络
  • 步骤9:模型评估
  • 结论

本文将分布详细介绍,如何使用PyTorch构建和训练一个简单的卷积神经网络(CNN),非常适合新手练手。我们将使用MNIST数据集(手写体数字数据集)来训练我们的模型。本指南假设你有一些Python和神经网络的基础知识,但不需要有PyTorch的经验。

CNN Architecture

步骤1:导入所需的库

首先,我们需要导入必要的库。PyTorch是我们用于构建和训练神经网络的主要库。我们还将使用torchvision来处理数据集和转换。

import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import optim
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm

步骤2:定义卷积神经网络架构

我们将创建一个简单的CNN,它有两个卷积层,后面是一个完全连接的层。CNN特别适合图像数据,因为它们会自动捕获图像中的空间层次结构,例如边缘,纹理和更复杂的模式。

卷积层

卷积层是CNN的构建块。它们由几个关键组成部分组成:

过滤器(内核)-kernal

  • 滤波器是在输入图像上滑动并执行逐元素乘法然后求和的小矩阵。每个滤波器被设计为检测输入图像中的特定特征。
  • 例如,过滤器可以检测水平边缘、垂直边缘或更复杂的纹理。
  • 将滤波器应用于输入图像的输出称为特征图或激活图。如果你有多个过滤器,你会得到多个特征图。

img

步幅-stride

  • 步幅是滤波器在输入图像上移动的步长。
  • 步幅为1意味着过滤器一次移动一个像素,包括水平和垂直方向。
  • 较大的步幅会减小特征图的大小,因为过滤器会跳过更多的像素。例如,步幅为2意味着过滤器一次移动两个像素,有效地对特征图进行下采样。

img

填充-padding

  • 填充涉及在输入图像的边界周围添加额外的像素。这些额外的像素通常设置为零(零填充)。
  • 填充可确保滤镜正确地覆盖图像,尤其是在边缘处。如果没有填充,特征图的大小在每次卷积操作后都会减小。
  • 例如,如果您有一个5x5的输入图像和一个没有填充的3x3过滤器,则生成的特征图将是3x3。当padding为1时,特征图保持与输入相同的大小。

img

特征图

  • 特征图是在对输入图像应用滤波器之后卷积层的输出。
  • 每个特征映射对应于不同的过滤器,并从输入中捕获不同的特征。
  • 将多个特征图堆叠在一起形成多通道输出,该输出用作下一层的输入。

img

池化层

池化层减少了特征图的空间维度,这有助于提高网络的计算效率并减少过拟合。有两种主要类型的池:

img

  1. 最大池化
  • 最大池化从特征图的每个补丁中获取最大值。
  • 例如,在2x2最大池化操作中,取特征图的每个2x2块的最大值来创建新的较小特征图。
  • 此操作会将特征图的大小在水平和垂直方向上减少一半,但保留最突出的特征。
  1. 平均合并
  • 平均池取特征图每个补丁的平均值。
  • 类似于最大池,但不是最大值,而是每个块的平均值。
  • 这在不同的上下文中可能很有用,尽管最大池在实践中更常见。

以下是我们如何定义我们的CNN:

class CNN(nn.Module):def __init__(self, in_channels, num_classes=10):"""Define the layers of the convolutional neural network.Parameters:in_channels: intThe number of channels in the input image. For MNIST, this is 1 (grayscale images).num_classes: intThe number of classes we want to predict, in our case 10 (digits 0 to 9)."""super(CNN, self).__init__()# First convolutional layer: 1 input channel, 8 output channels, 3x3 kernel, stride 1, padding 1self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=8, kernel_size=3, stride=1, padding=1)# Max pooling layer: 2x2 window, stride 2self.pool = nn.MaxPool2d(kernel_size=2, stride=2)# Second convolutional layer: 8 input channels, 16 output channels, 3x3 kernel, stride 1, padding 1self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=3, stride=1, padding=1)# Fully connected layer: 16*7*7 input features (after two 2x2 poolings), 10 output features (num_classes)self.fc1 = nn.Linear(16 * 7 * 7, num_classes)def forward(self, x):"""Define the forward pass of the neural network.Parameters:x: torch.TensorThe input tensor.Returns:torch.TensorThe output tensor after passing through the network."""x = F.relu(self.conv1(x))  # Apply first convolution and ReLU activationx = self.pool(x)           # Apply max poolingx = F.relu(self.conv2(x))  # Apply second convolution and ReLU activationx = self.pool(x)           # Apply max poolingx = x.reshape(x.shape[0], -1)  # Flatten the tensorx = self.fc1(x)            # Apply fully connected layerreturn x

步骤3:硬件设置

PyTorch可以在CPU和GPU上运行。我们将设备设置为使用GPU(如果可用);否则,我们将使用CPU。

device = "cuda" if torch.cuda.is_available() else "cpu"

步骤4:定义超参数

超参数是用于调整模型训练方式的配置设置。

input_size = 784  # 28x28 pixels (not directly used in CNN)
num_classes = 10  # digits 0-9
learning_rate = 0.001
batch_size = 64
num_epochs = 10  # Reduced for demonstration purposes

第5步:加载数据

我们将使用torchvision.datasets模块下载并加载MNIST数据集。我们还将使用DataLoader来处理批处理和洗牌。

train_dataset = datasets.MNIST(root="dataset/", download=True, train=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)test_dataset = datasets.MNIST(root="dataset/", download=True, train=False, transform=transforms.ToTensor())
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

步骤6:初始化网络

我们实例化我们的神经网络并将其移动到设备(GPU或CPU)。

model = CNN(in_channels=1, num_classes=num_classes).to(device)

步骤7:定义损失和优化器

我们将使用交叉熵损失进行分类,并使用Adam优化器更新模型的权重。

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

步骤8:训练网络

我们将多次循环数据集(epoch),并根据损失更新模型的权重。

for epoch in range(num_epochs):print(f"Epoch [{epoch + 1}/{num_epochs}]")for batch_index, (data, targets) in enumerate(tqdm(train_loader)):# Move data and targets to the device (GPU/CPU)data = data.to(device)targets = targets.to(device)# Forward pass: compute the model outputscores = model(data)loss = criterion(scores, targets)# Backward pass: compute the gradientsoptimizer.zero_grad()loss.backward()# Optimization step: update the model parametersoptimizer.step()

步骤9:模型评估

我们将定义一个函数来检查模型在训练和测试数据集上的准确性。

def check_accuracy(loader, model):"""Checks the accuracy of the model on the given dataset loader.Parameters:loader: DataLoaderThe DataLoader for the dataset to check accuracy on.model: nn.ModuleThe neural network model."""if loader.dataset.train:print("Checking accuracy on training data")else:print("Checking accuracy on test data")num_correct = 0num_samples = 0model.eval()  # Set the model to evaluation modewith torch.no_grad():  # Disable gradient calculationfor x, y in loader:x = x.to(device)y = y.to(device)# Forward pass: compute the model outputscores = model(x)_, predictions = scores.max(1)  # Get the index of the max log-probabilitynum_correct += (predictions == y).sum()  # Count correct predictionsnum_samples += predictions.size(0)  # Count total samples# Calculate accuracyaccuracy = float(num_correct) / float(num_samples) * 100print(f"Got {num_correct}/{num_samples} with accuracy {accuracy:.2f}%")model.train()  # Set the model back to training mode# Final accuracy check on training and test sets
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

结论

本文使用PyTorch构建、训练和评估了一个简单的卷积神经网络(CNN)。本指南涵盖了从定义模型架构到加载数据、训练模型和评估其性能的基本内容。CNN是图像识别任务的强大工具,PyTorch为开发它们提供了一个灵活而强大的框架。


关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1547594.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

基于卷积神经网络的体育运动项目分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 随着计算机视觉和深度学习技术的快速发展,利用先进的图像处理技术对体育运动进行智能分类与识别已成为研究热点。传统的运动分析方法通常依赖于人工观察和记录,耗时耗力且容…

Golang | Leetcode Golang题解之第440题字典序的第K小数字

题目&#xff1a; 题解&#xff1a; func getSteps(cur, n int) (steps int) {first, last : cur, curfor first < n {steps min(last, n) - first 1first * 10last last*10 9}return }func findKthNumber(n, k int) int {cur : 1k--for k > 0 {steps : getSteps(cu…

基于SSM+小程序的在线课堂微信管理系统(在线课堂1)(源码+sql脚本+视频导入教程+文档)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 &emsp1、管理员实现了首页、个人中心、用户管理、课程分类管理、课程信息管理、课程订阅管理、课程视频管理、公告栏管理、留言板管理、系统管理。 2、用户实现了首页、课程信息、公…

Windows系统下批量重命名文件的两种实现方法

我们如果有一批文件&#xff0c;想要大批的重命名文件。例如&#xff0c;将下面的这些图片重命名为boot_itc_00001.jpg、boot_itc_00002.jpg、……、boot_itc_01000.jpg。总不能一个一个改吧&#xff1f; 第一种方法&#xff08;也是最灵活的一种&#xff09;&#xff1a; 借助…

机器学习-KNN分类算法

1.1 KNN分类 KNN分类算法&#xff08;K-Nearest-Neighbors Classification&#xff09;&#xff0c;又叫K近邻算法。它是概念极其简单&#xff0c;而效果又很优秀的分类算法。1967年由Cover T和Hart P提出。 KNN分类算法的核心思想&#xff1a;如果一个样本在特征空间中的k个最…

IIs站点发布ERR_UNSAFE_PORT

换个端口&#xff0c;谢谢&#xff01; nice 浏览器对部分端口有特定的保护机制&#xff0c;如果你的应用使用了这些端口&#xff0c;浏览器在发送请求时会触发保护机制&#xff0c;拒绝发送请求&#xff0c;于是&#xff0c;你的服务器应用自然就收不到请求了。 1, // …

树莓派基础命令

目录 1.树莓派简介 2.树莓派使用命令 3.树莓派包管理 4.关于远程连接树莓派的思路&#xff1a; 5.总结 1.树莓派简介 树莓派&#xff08;Raspberry Pi&#xff09;是一款由英国非营利组织树莓派基金会开发的小型、低成本的单板计算机&#xff0c;最初设计目的是为了让学生…

好看的首页展示

代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style>/* RESET…

【BUG】静读天下|静读天下无法设置段间距解决方案

【BUG】静读天下&#xff5c;静读天下无法设置段间距解决方案 文章目录 【BUG】静读天下&#xff5c;静读天下无法设置段间距解决方案前言解决办法 凑质量分静读天下的特点与优势功能布局与使用技巧个人使用心得结语 前言 03-23 求助&#xff5c;关于排版的问题【静读天下吧】_…

数字孪生平台,助力制造设备迈入超感知与智控新时代!

痛点剖析 当前&#xff0c;制造业面临系统分散导致的数据孤岛问题&#xff0c;严重阻碍了有效监管与统计分析&#xff1b;同时&#xff0c;设备多样化且兼容性不足&#xff0c;增加了管理难度&#xff1b;台账记录方式混乱&#xff0c;工单审批流程繁琐且效率低下&#xff1b;…

Stable Diffusion零基础学习

Stable Diffusion学习笔记TOP11 _插件篇之ControlNet功能篇 ControlNet目前支持的10多种预处理器&#xff0c;根据数据检测种类可分为两种类型&#xff1a; 1、功能型&#xff1a;拥有着不同的能力 2、构图型&#xff1a;控制着SD扩散图形的构图规则 Shuffle洗牌/转换&#…

基于Ubuntu 20.04 LTS上部署MicroK8s(最小生产的 Kubernetes)

目录 文章目录 目录简介Kubernetes简介MicroK8s简介Ubuntu系统MicroK8s的优势安装环境基本要求执行安装命令加入群组(使用非 root 用户访问)开启 dashboard 仪表盘查看服务名称查看仪表盘开放的端口打开浏览器检查状态打开你想要的服务(使用附加组件)开始使用 microk8s访问 Kub…

【【通信协议之ICMP协议的FPGA实现】】

通信协议之ICMP协议的FPGA实现 整体的实现框图如下所示 arp_rx.v module arp_rx#(//开发板MAC地址 00-11-22-33-44-55parameter BOARD_MAC 48h00_11_22_33_44_55, //开发板IP地址 192.168.1.10 parameter BOARD_IP {8d192,8d168,8d1,8d10} )(input …

RFID手持机——物联网时代的核心工具

一、行业背景 在当今物联网技术高速发展的时代&#xff0c;RFID技术作为核心的数据采集与识别手段&#xff0c;在物流、仓储、资产管理等众多领域发挥着至关重要的作用。以物流行业为例&#xff0c;利用RFID技术能够对货物进行全程精准跟踪&#xff0c;从入库、存储、搬运到出…

Keepalived+Nginx 高可用集群(双主模式)

1.基础环境配置 [rootlb1 ~]# systemctl stop firewalld # 关闭防火墙 [rootlb1 ~]# sed -i s/^SELINUX.*/SELINUXdisabled/ /etc/sysconfig/selinux # 关闭selinux&#xff0c;重启生效 [rootlb1 ~]# setenforce 0          …

从Elasticsearch到RedisSearch:探索更快的搜索引擎解决方案

文章目录 RedisSearch 的关键功能与 ElasticSearch 对比性能对比产品对比 如何使用 Docker 安装 RedisSearch1. 获取 RedisSearch Docker 镜像2. 启动 RedisSearch 容器3. 验证安装 RedisSearch 使用示例1. 连接到 RedisSearch2. 创建索引3. 添加文档4. 执行搜索搜索所有包含 &…

C++ | Leetcode C++题解之第440题字典序的第K小数字

题目&#xff1a; 题解&#xff1a; class Solution { public:int getSteps(int curr, long n) {int steps 0;long first curr;long last curr;while (first < n) {steps min(last, n) - first 1;first first * 10;last last * 10 9;}return steps;}int findKthNum…

Ubuntu20.04 安装汉语拼音后重启登入黑屏

在虚拟机上装了一个Ubuntu用来学C&#xff0c;默认没有安装中文输入。于是按照网上教程装了几个汉语包。切换输入法的时候突然死机&#xff0c;重启登入直接黑屏。百度后发现有不少老哥和我这个问题一模一样&#xff0c;按照他们的方法也终于整好了&#xff0c;虚惊一场。 解决…

Windows 10 系统安装 FFmpeg 查看、转换、编辑音频文件

1、FFmpeg官网&#xff1a;FFmpeg 点击下载 可以选择下载full版本 下载之后解压到指定目录&#xff0c;在系统环境变量 Path 里面新增环境变量 打开CMD终端运行 ffmpeg -version 查看是否安装成功。 2、基本命令 查看音频基本信息 ffprobe 1.mp3 ##输出 [mp3 000002ab334405…

DataLight(V1.4.5) 版本更新,新增 Ranger、Solr

DataLight&#xff08;V1.4.5&#xff09; 版本更新&#xff0c;新增 Ranger、Solr DataLight 迎来了重大的版本更新&#xff0c;现已发布 V1.4.5 版本。本次更新对平台进行了较多的功能拓展和优化&#xff0c;新增了对 Ranger 和 Solr 服务组件的支持&#xff0c;同时对多项已…