class 023 随机快速排序

这篇文章是看了“左程云”老师在b站上的讲解之后写的, 自己感觉已经能理解了, 所以就将整个过程写下来了。

这个是“左程云”老师个人空间的b站的链接, 数据结构与算法讲的很好很好, 希望大家可以多多支持左程云老师, 真心推荐.
https://space.bilibili.com/8888480?spm_id_from=333.999.0.0

在这里插入图片描述

1. 快速排序过程详解

1.1 逻辑解释

  1. 先设置一个数组 arr[] = [ ], 下标是:0 ~ (n - 1),
  2. 然后 0 ~ (n - 1) 位置随机选择一个数字:p,
  3. 那么就按 p 为分界线, 将 <= p 的数字放在左边, 将 > p 的数字放在右边,
  4. 然后将 p 这个数字放在左边范围的最右侧位置, (当然可能有很多个 p, 但是我们不关心, 只是放一个)
  5. 此时这个 p 数字算是排好序了. 在整个数组位置上就已经不用变了.
  6. 然后从这个已经排好序的数字 p左边和右边位置调用递归过程排序就行了. (就是重复上面的过程), 每次都能将一个数字排好序.

1.2 代码实例

这个过程和上面的逻辑实现是一样的, 直接看就能看懂, 这里我就直接说明几个需要注意的点.

  1. l >= r:若是 l == r 说明只有一个数字, 不用排序, 若是 l > r 说明数组不存在.
  2. Math.random() 方法的使用:这个 Math.random() 方法返回 [0, 1) 之间任意的一个浮点数, 我感觉说到这里已经能说明问题了, 这个应该是谁都要掌握的, 要是不知道, 就直接随便看一下讲解就行了. 真没有什么好讲的.
public static int[] sortArray(int[] nums) {  if (nums.length > 1) {  quickSort1(nums, 0, nums.length - 1);  }  return nums;  
}  // 随机快速排序经典版(不推荐)  
public static void quickSort1(int[] arr, int l, int r) {  if (l >= r) {  return;  }  // 随机这一下,常数时间比较大  // 但只有这一下随机,才能在概率上把快速排序的时间复杂度收敛到O(n * logn)  int x = arr[l + (int) (Math.random() * (r - l + 1))];  int mid = partition1(arr, l, r, x);  quickSort1(arr, l, mid - 1);  quickSort1(arr, mid + 1, r);  
}  // 已知arr[l....r]范围上一定有x这个值  
// 划分数组 <=x放左边,>x放右边,并且确保划分完成后<=x区域的最后一个数字是x  
public static int partition1(int[] arr, int l, int r, int x) {  // a : arr[l....a-1]范围是<=x的区域  // xi : 记录在<=x的区域上任何一个x的位置,哪一个都可以  int a = l, xi = 0;  for (int i = l; i <= r; i++) {  if (arr[i] <= x) {  swap(arr, a, i);  if (arr[a] == x) {  xi = a;  }  a++;  }  }  swap(arr, xi, a - 1);  return a - 1;  
}  public static void swap(int[] arr, int i, int j) {  int tmp = arr[i];  arr[i] = arr[j];  arr[j] = tmp;  
}

2. partition 函数详解

这段代码会有两个分支, 就是 <= x 和 > x, 所以最开始, 设置 i 对传递进来的数组范围上进行遍历,

  1. 若是 i 遍历到的数字 <= x, 就让 arr[a] 和 arr[i] 进行互换(这一步是到了 i 遍历的数字 > x 的时候进行交换, 为以后做铺垫), 然后将 a++, i++. 此时 <= x 范围的的数字扩大了.
  2. 若是 i 遍历到的数字 > x, 就让 a不变, i++,
  3. 通过上述过程, i 遍历完数组的数字之后, 可以实现将所有 <= x 的数字放在数组的左侧, 将所有 > x 的数字放在数组的右侧.
  4. 然后将 x 数字归位到 a - 1 位置. 因为这样才能保证 x 数字在数组中已经是排好序了.
  5. 最后返回 a - 1 下标.

其中的 a, xi 变量, 左程云老师都在代码的注释中说明好了, 就不画蛇添足了.

// 已知arr[l....r]范围上一定有x这个值  
// 划分数组 <=x放左边,>x放右边,并且确保划分完成后<=x区域的最后一个数字是x  
public static int partition1(int[] arr, int l, int r, int x) {  // a : arr[l....a-1]范围是<=x的区域  // xi : 记录在<=x的区域上任何一个x的位置,哪一个都可以  int a = l, xi = 0;  for (int i = l; i <= r; i++) {  if (arr[i] <= x) {  swap(arr, a, i);  if (arr[a] == x) {  xi = a;  }  a++;  }  }  swap(arr, xi, a - 1);  return a - 1;  
}  

3. Partition 函数优化

3.1 优化逻辑

在经典的 Partition 函数中, 只是将所有的位置分成了两个区域, 一次只能是调整好一个数字, 但是有可能在一个数组中, 可能有很多个相同的数字, 比如在随机选择之后, 我们选择了 x, 但是这个 x 在这个数组中, 有很多个, 那我们干脆可以将所有与 x 相等的数字都排好序, 所以对应的:可以将这个数组分为三个区域:左边是 < x 的区域, 中间是 == x 的区域, 右边是 > x 的区域, 这样就有可能一次将数组中的多个数字排好序.

3.2 代码实例

讲解:我们随机选择的一个数字:x, 还是和原来一样, 设置一个 i 遍历数组中的所有数字, 将传进来的数组的最左边设置为 l, 最右边设置为:r, 分为三种情况.

  1. 若是 < x, 则交换 a 和 i, 然后将 a++, i++.
  2. 若是 == x, 则只是 i++.
  3. 若是 > x, 则交换 b 和 i, 然后将 b--, i 不变.
  4. 按照上述步骤, 可以将数组分为三个部分.

这个的时间复杂度为:O(n), 因为只是用 i 遍历了整个数组.

需要注意的是:这个函数是有返回值的, 只是用全局变量进行等效果的替换了. 使用的方式和意义及其注意点左程云老师都在注释里说明白了.

// 随机快速排序改进版(推荐)  
public static void quickSort2(int[] arr, int l, int r) {  if (l >= r) {  return;  }  // 随机这一下,常数时间比较大  // 但只有这一下随机,才能在概率上把快速排序的时间复杂度收敛到O(n * logn)  int x = arr[l + (int) (Math.random() * (r - l + 1))];  partition2(arr, l, r, x);  // 为了防止底层的递归过程覆盖全局变量  // 这里用临时变量记录first、last  int left = first;  int right = last;  quickSort2(arr, l, left - 1);  quickSort2(arr, right + 1, r);  
}  // 荷兰国旗问题  
public static int first, last;  // 已知arr[l....r]范围上一定有x这个值  
// 划分数组 <x放左边,==x放中间,>x放右边  
// 把全局变量first, last,更新成==x区域的左右边界  
public static void partition2(int[] arr, int l, int r, int x) {  first = l;  last = r;  int i = l;  while (i <= last) {  if (arr[i] == x) {  i++;  } else if (arr[i] < x) {  swap(arr, first++, i++);  } else {  swap(arr, i, last--);  }  }  
}

4. 时间复杂度分析

在这里插入图片描述

这个随机行为的时间复杂度需要用期望来估计, 这个已经在前面的时间复杂度章节中说明过了.

4.1 最差情况

最慢的情况是:arr[] = [1, 2, 3, 4, 5, 6, 7], 若是选择了一个最右侧的数字 7, 那就要将左边所有的数字遍历一遍, 将 7 放到正确位置之后, 选择 6, 继续进行遍历, 最后都排好序了, 这个的时间复杂度是:O(n^2).

空间复杂度是:O(n), 因为按照最差情况, 递归过程压的层数是 n 层.

4.2 最优情况

最优情况是随机选择之后的数字在整个数组的最中间位置(按数值大小). 所以递归过程是两个相同的子过程 (近似看成), 然后 Partition 过程的时间复杂度是:O(n), 所以根据 master 公式,
时间复杂度 == 2 * T(N/2) + O(n) == O(n * log(n)).

空间复杂度:因为此时是最优的情况, 所以对应的递归过程也是一个最好的情况, 递归到最底层之后, 返回, 然后进行另一个递归过程, 此时占用的空间是原来最底层的函数使用过的, 是重复利用了的空间, 所以假设数组长度是:n, 所以这个就是一个二分的过程, 空间复杂度:O(log(n)).

当然也有可能是一般情况, 有可能还是比较靠近两侧, 或者是比较靠近中间, 但不是最优情况, 也不是最差情况.

所以根据期望, 最后的时间复杂度是:O(n * log(n)), 空间辅助度是:O(log(n)). 而且这个不是最好情况的时间复杂度和空间复杂度, 这是数学家们根据所有的情况统计之后, 进行严密的论证之后的答案, 是可以和最好的情况相等, 但是不是最好情况直接用的.

注意:这个证明过程很复杂, 不用掌握也不影响后续的学习.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1547537.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

MySql简介及发展

MySql简介及发展 1、MySql起源和分支 MySQL 是最流行的关系型数据库软件之一&#xff0c;由于其体积小、速度快、开源免费、简单易用、维护成本 低等&#xff0c;在集群架构中易于扩展、高可用&#xff0c;因此深受开发者和企业的欢迎。 Oracle和MySQL是世界市场占比最高的两…

从入门到入土:计算机视觉CV学习路线图

在当今这个被数据和图像淹没的世界&#xff0c;计算机视觉&#xff08;CV&#xff09;正如一位聪明绝顶的魔术师&#xff0c;能够从无数的图像中提取出有意义的信息。对于那些初入这个领域的新人&#xff0c;学习计算机视觉既是一场冒险&#xff0c;也是一场盛宴。让我作为一位…

C语言进阶之泛型列表(Generic List)

1.前言 数据结构是需要泛型的,而在C语言中实现泛型就只能去用指针魔法了,来跟我一起实现吧!所有代码经测试未发现明显bug,可放心食用. 2.代码截图展示 1.list.h 2.main.c 3.list.c 3.结语 这次分享的列表采用动态数组的方式实现,下次我会去用链表实现,两种实现方式各有优劣,希…

20 vue3之自定义hooks

Vue3 自定义Hook的作用 主要用来处理复用代码逻辑的一些封装 Vue3 的 hook函数 相当于 vue2 的 mixin, 不同在与 hooks 是函数Vue3 的 hook函数 可以帮助我们提高代码的复用性, 让我们能在不同的组件中都利用 hooks 函数 这个在vue2 就已经有一个东西是Mixins mixins就是将…

代码随想录算法训练营第57天 | 寻宝

寻宝 题目描述 在世界的某个区域&#xff0c;有一些分散的神秘岛屿&#xff0c;每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路&#xff0c;方便运输。 不同岛屿之间&#xff0c;路途距离不同&#xff0c;国王希望你可以规划建公路的方案&#xff0c;如何…

PostgreSQL 创建表,常规表、外部表、分区表区别讲解

PostgreSQL 创建表&#xff0c;常规表、外部表、分区表区别讲解 创建表&#xff0c;常规表、外部表、分区表区一、常规表1. 定义和特点&#xff1a;2. 适用场景&#xff1a; 二、外部表1. 定义和特点&#xff1a;2. 适用场景&#xff1a; 三、分区表1. 定义和特点&#xff1a;2…

什么是Agent智能体?

你好&#xff0c;我是三桥君 近期&#xff0c;从各大厂商的年度大会到多个大型AI峰会&#xff0c;三桥君明显感受到行业风气的转变。这些会议不仅展示了众多AI Agent的实际应用案例&#xff0c;还有专家们对未来发展的预测。一时间&#xff0c;“Agent”这个词成为了热门词汇&…

【论文阅读】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion

Abstract 本文介绍了扩散策略&#xff0c;这是一种通过将机器人的视觉运动policy表示为条件去噪扩散过程来生成机器人行为的新方法。我们对来自 4 个不同的机器人操作基准的 15 个不同任务的扩散策略进行了基准测试&#xff0c;发现它始终优于现有的 state-of-the-art 机器人学…

【AndroidStudio】关于AndroidStudio的常见控件TextView和Button

作者&#xff1a;CSDN-PleaSure乐事 欢迎大家阅读我的博客 希望大家喜欢 使用环境&#xff1a;AndroidStudio 1.常见控件TextView 1.1基本信息 TextView主要用于在界面上显示一段文本信息。最基本的代码格式如下&#xff1a; <TextView android:id"id/text_vie…

如何在 macOS(MacBook Pro、Air 和 iMac)上恢复未保存的 Word 文档

Microsoft Word 在许多用户中很受欢迎&#xff0c;并且有多种用途。无论是为学校写论文、在办公室写报告还是其他许多事情。但是不保存文档并丢失数据可能是您可能面临的最可怕的噩梦。但是&#xff0c;也有几种方法可以在 macOS 上恢复未保存的 Word 文档。 用户在 Windows P…

智能手机取证: 专家如何从被锁定设备中提取数据?

在数字取证领域&#xff0c;从被锁定的手机中检索数据的能力是决定调查成功与否的关键技能。由于智能手机往往是解决复杂案件的关键&#xff0c;智能手机取证已经成为打击犯罪和恐怖主义战争中的一个关键组成部分。通话记录、短信、电子邮件&#xff0c;甚至位置数据都可能被发…

如何在谷歌浏览器上玩大型多人在线游戏

在如今的数字时代&#xff0c;谷歌浏览器已经成为了许多人上网冲浪的首选工具。除了浏览网页、观看视频之外&#xff0c;你还可以在谷歌浏览器上畅玩各种大型多人在线游戏。本文将为你详细介绍如何在谷歌浏览器上玩大型多人在线游戏的步骤。 &#xff08;本文由https://chrome…

asp.net mvc core 路由约束,数据标记DataTokens

》从0自己搭建MVC 》用 asp.net Core web 应用 空web 应用程序 需要配置 mvc服务 、mvc路由 新建 Controller 、Models、Views 》》》core 6 之前版本 vs2022 asp.net Core Web 应用&#xff08;模型-视图-控制器&#xff09; 不需要配置 就是mvc框架 asp.net Core web 应…

c++算法第二天

温馨提示&#xff1a;本篇文章适合刚开始练算法的小白&#xff0c;大佬若见勿嘲 题目 题目解析 遇到0写两遍&#xff0c;非0写一遍&#xff0c;其余非零数右移即可 编写原理 第一步找到最后一个被复写的数 先根据题目所给的例子找到最后一次要复写的数字 20240923_142843 第…

OpenHarmony(鸿蒙南向)——平台驱动指南【I2C】

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 鸿蒙&#xff08;OpenHarmony&#xff09;南向开发保姆级知识点汇总~ 持续更新中…… 概述 功能简介 I2C&#xff08;Inter Integrated Circuit&#x…

怎么备考2024年11月软考高级系统架构师 ?

分享下我的系统架构设计师考证之路&#xff0c;希望能对即将参加考试的小伙伴们带来一些启示和帮助。 先贴出自己软考系统架构设计师成绩&#xff0c;备考一次就通过了考试。 一、架构考试教材 架构考试教材目前使用的是系统架构设计师教程&#xff08;第2版&#xff09;&…

Excel锁定单元格,使其不可再编辑

‌在Excel中&#xff0c;锁定单元格后仍然可以编辑‌&#xff0c;这主要涉及到对特定单元格或区域的锁定与保护工作表的设置。以下是实现这一功能的具体步骤&#xff1a; ‌解除工作表的锁定状态‌&#xff1a;首先&#xff0c;需要全选表格&#xff08;使用CtrlA快捷键&#x…

叉车司机信息权限采集系统,保障与优化叉车运输网络的安全

叉车司机信息权限采集系统可以通过监控司机的行车行为和车辆状况&#xff0c;实时掌握车辆位置和行驶路线&#xff0c;从而提高运输安全性&#xff0c;优化运输网络&#xff0c;降低事故风险。同时&#xff0c;该系统还可以通过对叉车司机信息和行车数据的分析&#xff0c;优化…

新书推荐——《Python贝叶斯深度学习》

在过去的十年中&#xff0c;机器学习领域取得了长足的进步&#xff0c;并因此激发了公众的想象力。但我们必须记住&#xff0c;尽管这些算法令人印象深刻&#xff0c;但它们并非完美无缺。本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理&#xff0c;帮助读者掌握开…

vscode使用yarn 启动vue项目记录

第一次启动yarn项目&#xff0c;这个是公司的老项目&#xff0c;遇到了点问题&#xff0c;记录下首先是我一般使用的是npm命令&#xff0c;所以没有安装yarn vscode安装yarn vscode进入到该项目文件夹下&#xff0c;输入命令&#xff1a;npm install -g yarn 安装成功后&…