了解针对基座大语言模型(类似 ChatGPT 的架构,Decoder-only)的重头预训练和微调训练

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


随着自然语言处理(NLP)技术的飞速进步,基于 Transformer 架构的大语言模型在众多任务中取得了显著成就。特别是 Decoder-only 架构,如 GPT 系列模型,因在生成任务和零样本泛化中的出色表现而备受瞩目。本文旨在深入剖析从头预训练及微调此类大型基座语言模型的核心策略与面临的挑战。

在这里插入图片描述


一、重头预训练

Decoder-only 模型仅采用 Transformer 的解码器部分,专注于连续文本的生成。其核心思想是利用自回归机制,根据给定的上下文预测下一个词元。该架构在处理语言生成任务时,展现出以下显著优势:

  • 训练高效:无需编码器,从而简化了模型结构,降低了计算复杂度。
  • 生成能力强:擅长产出连贯且高度上下文相关的长文本。

数据集准备

多样性和规模在预训练中至关重要,因为它要求大量且多样化的文本数据来全面捕获语言的广泛特征。常用的数据源主要分为两类:

  • 开放数据集:这类资源广泛可用,包括如 Common Crawl、BooksCorpus 以及维基百科等,它们为预训练模型提供了丰富的文本素材。
  • 专有数据集:这类数据则是根据特定行业或领域的需求收集而来,能够针对性地增强模型在相关领域的理解和表现。

数据清洗是保障数据质量的关键步骤,具体涉及以下几方面的处理:

  • 去重与去噪:有效删除重复及无实际意义的文本,确保数据的纯净性。
  • 内容过滤:严格移除包含偏见、仇恨言论或任何其他不恰当内容的文本,以维护数据的正面性和适用性。
  • 标准化处理:统一文本的编码方式、标点符号使用及整体格式,提升数据的一致性和可处理性。

模型架构设计

层数与隐藏单元:模型的深度和宽度直接关联到其学习能力。具体配置如下:

  • 层数(Layers):常见的层数设置包括 12 层、24 层、48 层等。
  • 隐藏维度(Hidden Size):常见的隐藏维度设置如 768、1024、2048 等。
  • 此外,多头注意力机制通过增加注意力头的数量,使模型能够捕获更丰富的语义关系。

位置编码方面,模型可采用绝对或相对位置编码方式,以更有效地理解序列中的信息

预训练目标和策略

大语言模型目标:典型的预训练目标是最大化序列中下一个词元的概率,即最小化以下损失函数: L = − ∑ t = 1 T log ⁡ P ( x t ∣ x < t ) L=-\sum_{t=1}^T\log P\left(x_t|x_{<t}\right) L=t=1TlogP(xtx<t)

训练策略优化建议:

  • 批量大小调整:增大批量大小能有效提升训练速度,但需注意硬件资源限制。为解决此问题,可考虑采用梯度累积技术,以在不增加硬件负担的前提下,模拟大批量训练的效果。
  • 学习率精细化调控:建议实施预热(Warm-up)阶段,随后采用学习率衰减策略,如线性衰减或余弦退火,以更细致地控制学习过程,加速收敛同时避免震荡。
  • 强化正则化措施:为防范模型过拟合,应综合运用 Dropout 技术和权重衰减等方法,有效减少模型复杂度,提升泛化能力。

计算资源和优化:

  • 硬件需求:预训练大型模型通常需要大量的 GPUs 或 TPUs 资源,以支持分布式训练的高效进行。
  • 混合精度训练:采用半精度(FP16)或混合精度技术,能够显著加速训练过程并减少内存占用。
  • 分布式训练框架:利用如 Horovod、DeepSpeed 或 Megatron-LM 等框架,可助力实现多机多卡环境下的高效训练。

二、微调方法

传统微调 - 全参数微调:此方法涉及在特定任务的数据集上,运用与该任务紧密相关的损失函数,对模型的所有参数进行全面更新。其优点在于能够高度适应新任务的需求,实现更好的任务性能。然而,也存在一些不足,主要包括计算与存储成本高昂,以及容易引发过拟合问题。

参数高效微调方法‌:

  • Adapter‌:在 Transformer 的层之间插入小巧的适配器模块,并仅针对这些模块的参数进行微调。
  • LoRA(Low-Rank Adaptation)‌:通过将权重的更新过程分解为低秩矩阵的形式,有效降低了需要更新的参数总数。
  • Prefix Tuning‌:专注于优化输入序列的前缀嵌入部分,而不直接修改模型的原有权重。

‌优势‌:

  • 参数效率高‌:显著减少了需要调整的参数数量,提高了训练效率。
  • 迁移性强‌:微调后的模块具有良好的可迁移性,能够轻松地在不同任务之间共享使用。

流程:

  • 初始模型微调:利用监督数据对模型执行初步微调。
  • 收集人类反馈:让人类评估模型的输出,据此构建偏好数据集。
  • 训练奖励模型:基于人类偏好数据,训练一个奖励模型,用于评估生成结果的质量。
  • 策略优化:采用强化学习算法(如 PPO、DPO),优化模型以最大化奖励。

挑战:

  • 数据收集成本高昂:需要大规模的人类标注工作。
  • 训练稳定性问题:强化学习过程存在使模型性能退化的风险,需精细调整参数以确保稳定。

三、面临的挑战

道德与安全性。有害内容生成问题:人工智能模型在生成内容时,有可能包含偏见、仇恨言论或虚假信息,这对社会和个人都可能造成不良影响。隐私泄露风险:另一个值得关注的方面是隐私泄露。由于训练数据中可能包含敏感信息,模型在生成内容的过程中有可能不经意间泄露这些信息,从而侵犯个人隐私。

解决方案:

  • 数据过滤:在预训练和微调阶段,实施严格的内容审查机制,以过滤并排除不良内容。
  • 后处理过滤器:在模型生成内容的阶段,采用安全过滤器来屏蔽并防止有害输出的产生。
  • 应用差分隐私技术:在训练过程中,引入差分隐私技术以保护用户个人信息的安全性和隐私。

计算与资源限制:

  • 高昂的训练成本源于对大量计算资源和时间的需求。
  • 部署挑战:大型模型在推理阶段同样需要高性能硬件的支撑。

解决方案包括:

  • 模型压缩:利用剪枝、量化等技术手段来缩减模型规模。
  • 知识蒸馏:通过该方法,将大型模型的知识有效传递给更小巧的模型。

‌技术复杂性‌:

  • 训练不稳定性‌:在训练过程中,可能会遇到梯度爆炸或梯度消失的问题,这会影响模型的稳定性和收敛性。
  • 长程依赖处理‌:面对超长序列数据时,模型往往难以有效捕获其中的依赖关系,这限制了其在处理复杂任务时的能力。

‌解决方案‌:

  • 优化算法改进‌:采用更稳定的优化器,并结合适当的正则化方法来改善训练过程中的稳定性,减少梯度问题。
  • 架构改进‌:通过引入相对位置编码和循环机制等创新设计,增强模型对长程依赖的捕捉能力,从而提升模型的整体性能。

最佳实践与建议

  • 循序渐进:建议从处理小规模模型和数据集开始,随着项目的进展逐步扩大其规模。
  • 精细超参数调优:根据具体的任务特性和数据分布,细致调整如学习率、批量大小等关键超参数。
  • 严密监控训练过程:实时跟踪并监测损失值、梯度变化及模型生成质量,以便及时发现问题并迅速解决。
  • 积极利用社区资源:广泛参考并借鉴开源项目、研究成果及社区经验,以加速项目的研发进程。

重头预训练和微调仅解码器的大语言模型是一项既复杂又具挑战性的任务,然而,其潜在价值极为显著。通过深入剖析模型架构、精心设计的训练策略以及直面挑战,并结合实际需求与可用资源,我们能够打造出性能卓越、应用广泛的通用或垂域大语言模型,为自然语言处理与理解领域的进步贡献重要力量。


小结一下:

  • 预训练过程侧重于在大规模无标签文本数据上进行,旨在使模型掌握语言的通用规律和知识。此阶段利用自监督学习任务,如“下一个词元预测”,其核心在于依据给定的上下文,精确计算并预测下一个词元出现的概率,从而选取最可能的词元。通过这一过程,模型能够汲取大量的语法、语义及上下文信息,为后续针对特定任务的训练奠定坚实而全面的基础。
  • 微调训练是在预训练模型的基础上,采用特定任务的标注数据进行深入训练的过程。其目的在于使模型适应特定的应用场景,进而提升在特定任务上的执行效果。微调过程往往需求较少的数据和计算资源,却能显著增强模型在特定领域的性能表现。
  • 这两个训练阶段中,模型参数会逐步调整,旨在提升其对自然语言的理解与生成能力。首先,重头预训练阶段赋予模型通用的语言能力;随后,微调训练阶段则针对特定任务需求,对模型进行精细调整。这种分阶段训练策略已被验证为增强大型语言模型性能及扩展其应用范围的有效手段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1547449.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

8.7基于数学形态学的边缘检测

基本概念 数学形态学&#xff08;Mathematical Morphology&#xff09;是一套用于图像处理的技术&#xff0c;它包括膨胀&#xff08;Dilation&#xff09;、腐蚀&#xff08;Erosion&#xff09;、开运算&#xff08;Opening&#xff09;和闭运算&#xff08;Closing&#xf…

使用电子模拟器 Wokwi 运行 ESP32 示例(Arduino IDE、VSCode、ESP32C3)

文章目录 Wokwi 简介安装客户端&#xff08;Mac/Linux&#xff09;创建 Token Arduino IDEVSCode 配置安装 wokwi 插件打开编译后目录 ESP32C3 示例Arduino IDE创建模拟器运行模拟器 Wokwi 简介 Wokwi 是一款在线电子模拟器。您可以使用它来模拟 Arduino、ESP32、STM32 以及许…

HTML·第3章 表格布局与表单交互

3.1 表格概述 3.1.1 表格的结构 表格是由行和列组成的二维表&#xff0c;而每行又由一个或多个单元格组成&#xff0c;用于放置数据或其他内容。表格中的单元格是行与列的交叉部分&#xff0c;是组成表格的最基本单元。单元格的内容是数据&#xff0c;也称数据单元格。数据单元…

线上环境排故思路与方法GC优化策略

前言 这是针对于我之前[博客]的一次整理&#xff0c;因为公司需要一些技术文档的定期整理与分享&#xff0c;我就整理了一下。(https://blog.csdn.net/TT_4419/article/details/141997617?spm1001.2014.3001.5501) 其实&#xff0c;nginx配置 服务故障转移与自动恢复也是可以…

人工智能开发实战照片智能搜索功能实现

内容提要 项目分析预备知识项目实战 一、项目分析 1、提出问题 随着人民生活水平的提高和手机照相功能的日趋完美&#xff0c;我们不经意中拍摄了很多值得回忆的时刻&#xff0c;一场说走就走的旅行途中也记录下许多令人心动的瞬间&#xff0c;不知不觉之中&#xff0c;我们…

【CSS in Depth 2 精译_040】6.3 CSS 定位技术之:相对定位(下)—— 用纯 CSS 绘制一个三角形

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一章 层叠、优先级与继承&#xff08;已完结&#xff09;第二章 相对单位&#xff08;已完结&#xff09;第三章 文档流与盒模型&#xff08;已完结&#xff09;第四章 Flexbox 布局&#xff08;已…

RabbitMQ应用

RabbitMQ 共提供了7种⼯作模式, 进⾏消息传递 一、七种模式的概述 1、Simple(简单模式) P&#xff1a;生产者&#xff0c;就是发送消息的程序 C&#xff1a;消费者&#xff0c;就是接收消息的程序 Queue&#xff1a;消息队列&#xff0c;类似⼀个邮箱, 可以缓存消息; ⽣产者…

【微服务即时通讯系统】——brpc远程过程调用、百度开源的RPC框架、brpc的介绍、brpc的安装、brpc使用和功能测试

文章目录 brpc1. brpc的介绍1.1 rpc的介绍1.2 rpc的原理1.3 grpc和brpc 2. brpc的安装3. brpc使用3.1 brpc接口介绍 4. brpc使用测试4.1 brpc同步和异步调用 brpc 1. brpc的介绍 1.1 rpc的介绍 RPC&#xff08;Remote Procedure Call&#xff09;远程过程调用&#xff0c;是一…

使用Postman搞定各种接口token实战

现在许多项目都使用jwt来实现用户登录和数据权限&#xff0c;校验过用户的用户名和密码后&#xff0c;会向用户响应一段经过加密的token&#xff0c;在这段token中可能储存了数据权限等&#xff0c;在后期的访问中&#xff0c;需要携带这段token&#xff0c;后台解析这段token才…

Java Stream流编程入门

流式编程 stream流式编程分为 首先转化为stream中间函数的链接最后的终结函数 怎么转化为stream 单列集合 List<String> list new ArrayList<String>(); Collections.addAll(list,"1","2","3","4","5","…

【MySQL】MVCC及其实现原理

目录 1. 概念介绍 什么是MVCC 什么是当前读和快照读 MVCC的好处 2. MVCC实现原理 隐藏字段 Read View undo-log 数据可见性算法 3. RC和RR隔离级别下MVCC的差异 4. MVCC&#xff0b;Next-key-Lock 防止幻读 1. 概念介绍 什么是MVCC Multi-Version Concurrency Cont…

FGPA实验——触摸按键

本文系列都基于正点原子新起点开发板 FPGA系列 1&#xff0c;verlog基本语法&#xff08;随时更新&#xff09; 2&#xff0c;流水灯&#xff08;待定&#xff09; 3&#xff0c;FGPA实验——触摸按键 一、触摸操作原理实现 分类&#xff1a;电阻式&#xff08;不耐用&…

LeetCode - 850 矩形面积 II

题目来源 850. 矩形面积 II - 力扣&#xff08;LeetCode&#xff09; 题目描述 给你一个轴对齐的二维数组 rectangles 。 对于 rectangle[i] [x1, y1, x2, y2]&#xff0c;其中&#xff08;x1&#xff0c;y1&#xff09;是矩形 i 左下角的坐标&#xff0c; (xi1, yi1) 是该…

通信工程学习:什么是VIM虚拟化基础设施管理器

VIM:虚拟化基础设施管理器 VIM(Virtualized Infrastructure Manager)虚拟化基础设施管理器,是一种负责管理和控制虚拟化环境中所有虚拟资源的工具和系统。以下是关于VIM虚拟化基础设施管理器的详细解释: 一、定义与功能 VIM是网络功能虚拟化(NFV)架构中…

李宏毅机器学习2023-HW10-Adversarial Attack

文章目录 TaskBaselineFGSM (Fast Gradient Sign Method (FGSM)I-FGSM(Iterative Fast Gradient Sign Method)MI-FGSM(Momentum Iterative Fast Gradient Sign Method)M-DI2-FGSM(Diverse Input Momentum Iterative Fast Gradient Sign Method) Reportfgsm attackJepg Compress…

探索5 大 Node.js 功能

目录 单线程 Node.js 工作线程【Worker Threads】 Node.js 进程 进程缺点 工作线程 注意 集群进程模块【Cluster Process Module】 内部发生了什么&#xff1f; 为什么要使用集群 注意&#xff1a; 应用场景&#xff1a; 内置 HTTP/2 支持 这个 HTTP/2 是什么&…

Windows安装Vim,并在PowerShell中直接使用vim

大家好啊&#xff0c;我是豆小匠。 这期介绍下怎么在windows的PowerShell上使用vim&#xff0c;方便在命令行里修改配置文件等。 先上效果图&#xff1a; 1、下载Vim GitHub传送门&#xff1a;https://github.com/vim/vim-win32-installer/releases 选择win-64的版本下载即可&…

VS Code使用Git Bash终端

Git Bash可以运行linux命令&#xff0c;在VS Code的终端界面&#xff0c;找到号旁边的箭头&#xff0c;就能直接切换了 当然&#xff0c;前提是安装了Git Bash&#xff0c;并且在资源管理器里&#xff0c;能鼠标右键出"Git Bash Here"

node.js从入门到快速开发一个简易的web服务器

浏览器中JavaScript学习路径: JavaScript基础语法浏览器内置API(DOMBOM)第三方库(jQuery,art-template等) Node.js的学习路径 JavaScript基础语法Node.js内置API模块(fs、path、http等)第三方API模块(express、mysql等) Node.js安装 通过Node.js 来运行Javascript 代码&am…

[已解决]npm install报错

问题分析&#xff1a; 想执行文件夹下的npm install&#xff0c;通过以及cmd进入&#xff0c;都会报错权限不够 如下报错&#xff08;哪一张不清楚&#xff0c;只知道是权限不够导致的&#xff09; 问题解决&#xff1a; 搜索Windows powershell 然后用管理员权限启动&#x…