transformer模型写诗词

加入会员社群,免费获取本项目数据集和代码:点击进入>>


1. 项目简介

该项目是基于A035-transformer模型的诗词生成系统,旨在通过深度学习技术实现古诗词的自动化创作。项目的背景源自当前自然语言处理领域的迅速发展,特别是Transformer模型在序列生成任务中的出色表现。Transformer模型通过自注意力机制,能够在处理长文本时有效捕捉上下文信息,使其非常适合古诗词这种结构化语言的生成。本项目利用大规模古诗词数据集进行模型训练,确保生成的诗句不仅符合古诗词的韵律结构,还具备一定的文学性。

该项目的核心目标是探索深度学习模型在艺术创作中的应用,具体而言,通过对传统诗词生成的模仿,使模型能够生成符合格律要求的七律、五律等诗歌形式。此外,项目还旨在开发一个易于使用的接口,让用户能够通过输入关键词或主题,生成相关的诗词作品。A035-transformer模型利用了其强大的文本理解与生成能力,使得在诗歌创作中,可以在短时间内获得高质量的诗句,这一成果为AI在文化艺术领域的应用提供了新的方向。

2.技术创新点摘要

Transformer模型的创新性应用:项目使用了基于GPT原理的Transformer模型,专门用于古诗词生成。与传统RNN或LSTM相比,Transformer通过自注意力机制能够更加精准地捕捉长距离的依赖关系,使得在处理具有严格格式要求的古诗词时,能更好地理解上下文的语义和结构要求,尤其是在处理平仄与押韵问题时表现尤为突出。

针对古诗词特点的定制化训练:该项目特别考虑了古诗词的独特格式(如平仄规则、对仗、押韵等),通过对大规模古诗词数据集的训练,使模型不仅能够生成符合现代语言要求的诗句,还能够遵循古诗的传统格式。这一创新使得模型不仅是生成文本,还兼顾了文化艺术创作中的特定需求。

多任务学习机制:模型在训练过程中引入了多任务学习机制,不仅生成古诗的字句,还通过特定的损失函数确保诗句符合传统诗歌的韵律和节奏。例如,模型可能同时优化语义连贯性、音韵规则和平仄协调性,从而使生成的诗句更加符合古代诗词的标准。

网页集成与可视化交互:除了模型本身的创新,项目还在网页端实现了模型的部署,使用户可以通过简单的输入关键词或主题,实时生成与主题相关的古诗。这种实时交互功能为用户提供了便捷的创作体验,并且通过可视化的方式让用户能够直观地理解生成过程。这种创新应用了深度学习模型的输出结果与用户界面之间的集成,为深度学习模型的文化创作提供了一个实用的场景。

3. 数据集与预处理

该项目使用的古诗词数据集主要来自于公开的中文古典文学资源库,包含大量不同风格的诗词作品,特别是唐宋时期的七律诗。这些诗词结构严格、韵律明确,数据集中每首诗都包括句子、平仄、押韵等信息,便于训练深度学习模型生成符合格式要求的古诗。

在数据预处理中,首先进行了数据清洗,去除无效字符、标点符号及不符合格式的诗句,以确保数据集的质量。接着,对文本进行了分词处理,将诗句分解为独立的字词单位,并将每个字词进行编码,转换为适合模型输入的数值格式。此外,还进行了韵律和平仄的标签化处理,为每个字注入对应的平仄信息,从而让模型能够学习到古诗词中的音律规律。

归一化步骤中,所有文本数据都被转换为同一固定长度,过长的诗句被截断,过短的诗句通过填充补全,这样确保了批处理中的每个输入样本具有相同的长度,适应模型的输入要求。在特征工程方面,特别提取了诗词的平仄和押韵规则作为特征,这些特征在模型训练中通过特定的损失函数被优化,使得生成的诗句不仅语义连贯,还能在形式上符合传统的格律要求。

为了提高模型的泛化能力,还引入了数据增强技术。通过随机替换或变换某些字词,生成新的诗句组合,从而扩大数据集的多样性。这种数据增强策略有助于避免模型过拟合,同时提升模型在生成不同风格诗句时的能力。

总结来说,数据集预处理流程经过了文本清理、分词、编码、归一化、特征提取等步骤,并结合了数据增强技术,确保模型能够在高质量数据基础上进行有效学习。

4. 模型架构

1) 模型结构的逻辑:

该项目使用的是基于Transformer结构的深度学习模型,模型层次设计如下:

  • Embedding层: 输入层将每个词转化为向量表示,通过嵌入矩阵 E,输入的词语 xi 被映射为 E(xi),生成的向量能够捕捉词与词之间的语义关联。数学表达式为:

h i = E ( x i ) h_i = E(x_i) hi=E(xi)

  • 其中,E是词嵌入矩阵,xi是输入词的索引。
  • 多头自注意力层 (Multi-Head Attention) : 该层用于捕捉词语间的依赖关系,特别是长距离依赖。多头自注意力机制通过计算词与词之间的注意力权重 A,并将其应用于词的表示 hi。其公式为:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

  • 其中 Q、K、V 分别为查询、键和值矩阵,dk 是键的维度。
  • Layer Normalization: 为了确保梯度稳定,层归一化被引入,公式为:
  • x^=x−μσ\hat{x} = \frac{x - \mu}{\sigma}x^=σx−μ
  • 其中,μ\muμ 是均值,σ\sigmaσ 是标准差,用于归一化。
  • Dropout层: 为了防止过拟合,模型在训练时随机丢弃一部分神经元,防止模型过度依赖特定路径。
  • 全连接层 (Dense) : 该层将注意力层输出的高维向量通过全连接层映射为目标输出,公式为:

x ^ = x − μ σ \hat{x} = \frac{x - \mu}{\sigma} x^=σxμ

  • 其中,W 是权重矩阵,b 是偏置向量。
  • Flatten层: 将多维的输出展平成一维,以便在后续处理时进行分类或生成任务。

2) 模型的整体训练流程和评估指标:

模型的训练流程主要分为以下几个步骤:

  1. 数据输入与编码:首先,将输入的诗句进行分词编码,并传递给模型的嵌入层,以获取词汇的向量表示。
  2. 注意力机制处理:模型通过多头注意力层计算词汇间的依赖关系,生成具有全局上下文信息的表示。
  3. 特征提取与映射:经过全连接层和归一化处理后,模型生成最终的预测结果。
  4. 损失函数:该模型使用交叉熵损失函数来评估生成的诗句与真实诗句的匹配程度,公式为: L = − ∑ i = 1 N y i log ⁡ ( y i ^ ) L = - \sum_{i=1}^{N} y_i \log(\hat{y_i}) L=i=1Nyilog(yi^) 其中 yi是真实标签,yi^ 是预测概率。
  5. 评估指标:模型使用准确率和BLEU分数来衡量生成诗句的质量。准确率用于评估字词的匹配情况,BLEU分数用于评估生成文本的语法和语义一致性。

在这里插入图片描述

5. 核心代码详细讲解

暂时无法在飞书文档外展示此内容

解释:

  • Embedding层将输入的词语转换为固定维度的向量,以捕捉词与词之间的语义关联。
  • MultiHeadAttention 层通过自注意力机制,能够在文本中捕捉不同的语义模式,尤其适合处理长距离依赖关系。这里使用了4个注意力头,并设置了dropout以防止过拟合。

暂时无法在飞书文档外展示此内容

解释:

  • LayerNormalization确保模型在训练时梯度稳定,Dropout用来防止模型过拟合。
  • Flatten层将多维度数据展平为一维,便于全连接层处理。最后,Dense层使用softmax激活函数,输出每个词的概率分布。

6. 模型优缺点评价

该A035-transformer模型的优点包括以下几点:

  1. 长距离依赖处理能力:使用多头注意力机制,模型能够捕捉古诗词中句子之间的长距离依赖性,非常适合处理古诗中平仄和韵律的复杂结构。
  2. 多任务学习:通过嵌入层结合注意力机制,模型不仅能够生成符合语义的诗句,还能生成符合古诗特定格式要求的句子,保证了诗词的平仄和押韵。
  3. 高效的并行计算:相较于传统的RNN和LSTM,Transformer模型能够并行处理输入序列,极大提升了训练速度和推理效率,适合大规模诗词数据的训练。

然而,模型也有一些缺点:

  1. 对长序列的生成效果有限:虽然注意力机制在捕捉长距离依赖上表现出色,但生成较长的诗句时,模型可能会失去对全局的把控,导致生成的句子缺乏连贯性。
  2. 数据依赖性强:模型对高质量、标注良好的数据集依赖较大。如果数据集中的诗词样本过于单一或不完整,可能会影响生成效果。
  3. 无法直接处理押韵等规则:尽管模型通过损失函数学习了音律规律,但并未直接内置处理押韵或句式的硬约束,可能在特定场合下出现不符合格式的情况。

改进方向:

  1. 模型结构优化:可以引入类似于GPT的预训练模型,利用大规模语言模型提升生成效果。
  2. 超参数调整:通过更细致的超参数调优,如调整注意力头的数量、层数、隐藏单元等,提升模型对语义和格式的学习能力。
  3. 更多数据增强:可以加入基于规则的文本增强方法,如句子重构或逆向生成,增加数据的多样性并增强模型的鲁棒性。

↓↓↓更多热门推荐:

改进创新TransUNet图像分割
卫星图像道路检测DeepLabV3Plus模型

点赞收藏关注,免费获取本项目代码和数据集,点下方名片↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1544804.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C++【类和对象】(构造函数与析构函数)

文章目录 1. 类的默认成员函数2. 构造函数析构函数的特点3. 析构函数析构函数的特点 结语 1. 类的默认成员函数 默认成员对象就是我们没有显示的写,但是编译器会自动生成的成员函数。一个类,我们不写的情况下编译器会默认生成以下6个成员函数&#xff0…

解决Nodify框架因自带放大缩小、平移功能导致拖拽添加的控件无法准确在鼠标放下的位置显示控件

ViewModel中写具体关键的几段代码: var editor sender as NodifyEditor; Point p e.GetPosition(editor);//放大缩小比例double scale editor.ViewportZoom;//经过放大缩小、平移后获得坐标点位置p new Point(Math.Round((p.X - editor.ViewportT…

响应式布局-媒体查询父级布局容器

1.响应式布局容器 父局作为布局容器,配合自己元素实现变化效果,原理:在不通过屏幕下面吗,通过媒体查询来改变子元素的排列方式和大小,从而实现不同尺寸屏幕下看到不同的效果。 2.响应尺寸布局容器常见宽度划分 手机-…

【Python】工具使用

pycharm Jupyter Notebook 参考文献 详解Jupyter Notebook (qq.com) python专业集成开发环境pycharm安装使用 (qq.com)

自动化学习3:日志记录及测试报告的生成--自动化框架搭建

一.日志记录 1.配置文件pytest.ini:将日志写入文件方便日后查询或查看执行信息。 需要将文件处理器(文件存放位置/时间/格式等等)添加到配置文件中的【日志记录器】 # pytest.ini [pytest] # ---------------日志文件,需要配合…

并发编程。

进程 1.什么是进程? 进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的 独立单位。进程是可与其他程序并发执行的程序,在一个数据集合上的运行过程。它是系统进行 资源分配和调度的一个独立单位。 2.进…

日丰卫浴启动国货好物节,以“焕新+公益+体验”筑国民美好生活

在当下卫浴行业面临转型升级的大背景下,宏观政策持续推动以旧换新和消费升级,为市场注入了新的活力。随着中秋国庆双节的临近,卫浴消费逐步进入传统旺季,叠加利好政策,市场需求进一步活跃,日丰卫浴借此契机…

常见统计量与其抽样分布

什么是统计量 我们首先给出统计量的定义:设 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1​,X2​,⋯,Xn​ 为来自于总体X的一个样本, g ( X 1 , X 2 , ⋯ , X n ) g(X_1,X_2,\cdots,X_n) g(X1​,X2​,⋯,Xn​) 为关于 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X…

【2024W37】肖恩技术周刊(第 15 期):中秋节快乐

周刊内容: 对一周内阅读的资讯或技术内容精品(个人向)进行总结,分类大致包含“业界资讯”、“技术博客”、“开源项目”和“工具分享”等。为减少阅读负担提高记忆留存率,每类下内容数一般不超过3条。 更新时间: 星期天 历史收录:…

微服务——配置管理

1.配置管理 微服务配置管理是指对微服务架构中各个服务的配置信息进行管理、更新、查询和审计等操作,以确保系统的正常运行和高效管理。例如,网关路由或某些业务配置在配置文件中写死了,每次修改都要重启服务。每个微服务都有很多重复的配置&…

同等学力英语历年真题有必要做吗

同等学力申硕历年真题是考生备考期间最重要的参考资料,在做真题的时候对那些经常出现的词汇要进行汇总整理,记忆高频词汇。 当你在阅读文章的时候发现不认识的单词或者一个熟悉的单词但是放在句子当中却读不通顺的这类单词的时候,一定要做好标…

WinCC中VB脚本和C脚本到底怎么选?

很多人认为VB脚本比C脚本慢,所以在WinCC中要尽量使用C脚本,以便提高性能,事实真是这样吗?工控人加入PLC工业自动化精英社群 先说结论:并非如此。在一个复杂的应用中,混合使用VB脚本和C脚本,对提…

mes系统在中小企业智能制造作用

MES系统(制造执行系统)在中小企业智能制造中扮演着至关重要的角色,其作用主要体现在以下几个方面: 1. 提升生产效率与质量 实时监控与数据采集:MES系统能够实时采集生产现场的各项数据,如设备状态、生产进…

Maya学习笔记:软选择

文章目录 打开软选择调整软选择范围衰减模式 软选择可以很好的进行渐变修改 打开软选择 方法1: 进入点线面模式,按B键进入软选择模式,再按B取消 方法2:双击左侧的选择按钮打开选择面板,勾选软选择 调整软选择范围 …

input文本框随其中内容而变化长

<!DOCTYPE html> <html lang="en"><head><meta charset="UTF-8"><title>input文本框随其中内容而变化长</title><style>.input-length {border: 1px solid #ccc;padding: 5px;min-width: 10px;width: auto;}.in…

物联网实践教程:微信小程序结合OneNET平台MQTT实现STM32单片机远程智能控制 远程上报和接收数据——STM32代码实现篇

STM32代码实现 开启本章节需要完成下方的前置任务&#xff1a; 点击跳转&#xff1a; 物联网实践教程&#xff1a;微信小程序结合OneNET平台MQTT实现STM32单片机远程智能控制 远程上报和接收数据——汇总 目标 1.连接OneNET&#xff1a;STM32使用串口与ESP8266/01s连接发送…

node.js npm 安装和安装create-next-app

1、官网下载windows版本NODE.JS https://nodejs.org/dist/v20.17.0/node-v20.17.0-x64.msi 2、安装后增加两个文件夹目录node_global、node_cache npm config set prefix "C:\Program Files\nodejs\node_global" npm config set prefix "C:\Program Files\nod…

828华为云征文 | 云服务器Flexus X实例,Docker集成搭建超级马里奥

828华为云征文 | 云服务器Flexus X实例&#xff0c;Docker集成搭建超级马里奥 华为云端口放行 服务器放行对应端口5000 Docker安装并配置镜像加速 1、购买华为云 Flexus X 实例 Flexus云服务器X实例-华为云 (huaweicloud.com) 2、docker安装 yum install -y docker-ce3、验证 …

网络编程——TCP网络通信

通信步骤&#xff1a; 1、连接 2、传输数据 3、关闭连接服务端的创建流程&#xff1a; 1、创建服务端socket对象 socket_family:网络地址类型AF_INET--代表的是ipv4地址类型 socket_type:套接字类型SOCK_STREAM--代表的是tcp套接字SOCK_DGRAM--代表的是udp套接字 2、绑定自己的…

企业如何利用短视频平台做口碑塑造和品牌营销?

抖音和小红书作为短视频平台的代表&#xff0c;吸引了大量的用户和品牌。如何利用抖音、小红书等短视频平台进行品牌塑造和口碑营销呢&#xff1f;小马识途营销顾问分析&#xff0c;短视频平台的用户以年轻人为主&#xff0c;他们具有高度的社交性和消费意愿。短视频平台提供了…