【机器学习】---神经架构搜索(NAS)

在这里插入图片描述

这里写目录标题

    • 引言
    • 1. 什么是神经架构搜索(NAS)
      • 1.1 为什么需要NAS?
    • 2. NAS的三大组件
      • 2.1 搜索空间
        • 搜索空间设计的考虑因素:
      • 2.2 搜索策略
      • 2.3 性能估计
    • 3. NAS的主要方法
      • 3.1 基于强化学习的NAS
      • 3.2 基于进化算法的NAS
      • 3.3 基于梯度的NAS
    • 4. NAS的应用
    • 5. 实现一个简单的NAS框架
    • 6. 总结

引言

随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方法,还依赖于网络架构本身。然而,手工设计一个适用于不同任务的高效架构需要大量的领域知识和实验。这时,**神经架构搜索(Neural Architecture Search,NAS)**应运而生,作为自动化寻找神经网络最佳架构的工具,它在一定程度上缓解了设计者的工作量,并能找到比人类手工设计更高效的架构。

本篇文章将详细介绍NAS的背景、方法、应用以及如何实现NAS算法。

1. 什么是神经架构搜索(NAS)

神经架构搜索(NAS) 是指通过搜索算法自动设计神经网络架构,从而优化特定任务的性能。NAS的目标是在一个定义好的搜索空间中,找到最佳的网络结构,该结构通常由性能指标(例如准确率、速度、参数量等)来衡量。

NAS主要包括三个关键要素:

  1. 搜索空间(Search Space):定义了所有可能的网络架构。
  2. 搜索策略(Search Strategy):指导如何在搜索空间中高效地探索。
  3. 性能估计(Performance Estimation):评估候选架构的性能。

1.1 为什么需要NAS?

  1. 减少人类干预:传统的网络架构设计依赖于研究人员的直觉和经验。NAS减少了这种依赖,通过算法自动生成架构。
  2. 找到更优架构:NAS可以找到比人类手工设计更优的架构。例如,Google使用NAS搜索到了著名的MobileNetV3。
  3. 提高搜索效率:尽管搜索空间巨大,NAS通过优化技术可以有效搜索到优秀的模型。

2. NAS的三大组件

2.1 搜索空间

搜索空间定义了NAS可以探索的所有可能网络结构,通常包括以下元素:

  • 层的类型(例如卷积层、池化层、全连接层)
  • 层的超参数(如卷积核大小、步长、激活函数等)
  • 网络拓扑结构(如层之间的连接方式)
搜索空间设计的考虑因素:
  1. 大小:搜索空间过大会导致搜索难度增加,过小则可能限制模型的表现力。
  2. 灵活性:搜索空间应涵盖多样化的网络结构以保证搜索结果的多样性。

2.2 搜索策略

搜索策略决定了如何在定义好的搜索空间中高效地寻找最优架构。目前,常用的搜索策略有以下几种:

  • 强化学习(Reinforcement Learning, RL):将网络架构的搜索过程视为一个决策问题,代理(agent)通过与环境交互学习构建更好的架构。

    import tensorflow as tf
    import numpy as npclass NASAgent(tf.keras.Model):def __init__(self, search_space):super(NASAgent, self).__init__()self.search_space = search_spaceself.policy_network = tf.keras.Sequential([tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dense(len(search_space), activation='softmax')])def call(self, state):return self.policy_network(state)# 使用强化学习进行搜索的伪代码
    def search_with_rl(agent, num_epochs=100):for epoch in range(num_epochs):state = np.random.randn(1, 10)  # 假设初始状态action_prob = agent(state)action = np.argmax(action_prob)# 这里基于action选择网络架构,并评估其性能performance = evaluate_model(action)agent.update_policy(action, performance)
    
  • 进化算法(Evolutionary Algorithms, EA):通过模拟生物进化过程(如变异、交叉、选择等)逐渐生成更好的架构。

    import random# 基于进化算法进行网络搜索的伪代码
    def evolve_population(population, generations=50):for generation in range(generations):selected_parents = select_best(population)offspring = crossover(selected_parents)mutated_offspring = mutate(offspring)population = selected_parents + mutated_offspringevaluate_population(population)
    
  • 随机搜索(Random Search):随机选择架构进行评估。这是最简单的NAS方法,但效率较低。

  • 贝叶斯优化(Bayesian Optimization):通过建立候选架构的代理模型来推测未测试架构的性能,从而减少评估次数。

2.3 性能估计

性能估计的目标是评估每个候选架构的表现。直接训练每个架构并评估其性能是非常耗时的,因此一些加速方法被提出:

  1. 参数共享(Weight Sharing):不同架构共享部分模型权重,以减少重复训练。
  2. 早期停止(Early Stopping):在验证集中观察到性能开始收敛时,提前停止训练,避免浪费计算资源。
  3. 代理模型:通过训练一个代理模型,来估计架构的性能而不必进行完整训练。
# 参数共享示例:多个架构共享部分卷积层权重
shared_conv_layer = tf.keras.layers.Conv2D(32, kernel_size=(3, 3), padding='same')def create_model_with_shared_weights():model = tf.keras.Sequential([shared_conv_layer,tf.keras.layers.Conv2D(64, kernel_size=(3, 3), padding='same'),tf.keras.layers.GlobalAveragePooling2D(),tf.keras.layers.Dense(10, activation='softmax')])return model

3. NAS的主要方法

3.1 基于强化学习的NAS

强化学习方法最早由Baker等人提出,并在Google的论文《Neural Architecture Search with Reinforcement Learning》中得到广泛应用。该方法通过RNN控制器生成网络架构,并通过训练好的架构性能反馈来更新控制器策略。

# 基于RNN控制器生成网络架构
class RNNController(tf.keras.Model):def __init__(self):super(RNNController, self).__init__()self.rnn = tf.keras.layers.LSTM(128)self.dense = tf.keras.layers.Dense(10, activation='softmax')def call(self, inputs):x = self.rnn(inputs)return self.dense(x)

3.2 基于进化算法的NAS

基于进化算法的NAS主要模拟了生物进化中的自然选择过程。其核心思想是通过不断变异和交叉已有的架构来生成新的架构,并根据性能选择最优个体。

# 进化算法示例
def mutate_architecture(architecture):# 随机修改架构中的某个层mutated_architecture = architecture.copy()layer_to_mutate = random.choice(mutated_architecture.layers)mutated_architecture.modify_layer(layer_to_mutate)return mutated_architecture

3.3 基于梯度的NAS

一种更高效的NAS方法是基于梯度的DARTS(Differentiable Architecture Search),它将架构搜索过程转换为可微分的优化问题,允许通过梯度下降进行优化。

# DARTS方法的伪代码
def darts_search(architecture_space):alpha = initialize_architecture_parameters()  # 可微的架构参数for epoch in range(num_epochs):weights = train_model(alpha)  # 使用当前架构训练模型alpha = update_architecture_parameters(weights, alpha)  # 更新架构参数

4. NAS的应用

NAS已经被广泛应用于图像分类、目标检测、语音识别等多个领域。例如:

  1. 图像分类:NASNet在ImageNet分类任务上达到了极高的性能。
  2. 语音识别:使用NAS找到的模型在语音识别任务上优于传统手工设计的模型。
  3. 自动驾驶:通过NAS优化了感知模块中的神经网络架构。

5. 实现一个简单的NAS框架

以下是一个简化的NAS框架代码,基于随机搜索进行架构优化。

import random
import tensorflow as tf# 定义搜索空间
def create_search_space():return [{'layer_type': 'conv', 'filters': 32, 'kernel_size': (3, 3)},{'layer_type': 'conv', 'filters': 64, 'kernel_size': (3, 3)},{'layer_type': 'dense', 'units': 128}]# 随机生成网络架构
def generate_random_architecture(search_space):model = tf.keras.Sequential()for layer_config in search_space:if layer_config['layer_type'] == 'conv':model.add(tf.keras.layers.Conv2D(filters=layer_config['filters'],kernel_size=layer_config['kernel_size'],activation='relu'))elif layer_config['layer_type'] == 'dense':model.add(tf.keras.layers.Dense(units=layer_config['units'], activation='relu'))model.add(tf.keras.layers.GlobalAveragePooling2D())model.add(tf.keras.layers.Dense(10, activation='softmax'))return model# 评估模型
def evaluate_model(model):model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 假设使用随机生成的数据进行评估x_train, y_train = random_data()model.fit(x_train, y_train, epochs=1)return model.evaluate(x_train, y_train)# 随机搜索NAS
def random_search_nas(search_space, num_trials=10):best_architecture = Nonebest_score = float('-inf')for _ in range(num_trials):architecture = generate_random_architecture(search_space)score = evaluate_model(architecture)if score > best_score:best_score = scorebest_architecture = architecturereturn best_architecture

6. 总结

神经架构搜索(NAS)作为一种自动化设计神经网络的技术,极大地提高了深度学习模型的开发效率。虽然其计算开销较大,但近年来通过权重共享、代理模型等技术大大降低了NAS的搜索成本。随着技术的发展,NAS已经应用于各种实际任务,并有望成为未来深度学习模型设计的重要工具。

NAS的未来方向可能包括更高效的搜索方法、更广泛的应用场景以及结合更多元的优化目标。通过这篇文章,希望你对NAS有了深入的理解,并掌握了基本的实现方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1542977.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】图的遍历

快乐的流畅:个人主页 个人专栏:《C游记》《进击的C》《Linux迷航》 远方有一堆篝火,在为久候之人燃烧! 文章目录 引言一、深度优先遍历1.1 定义1.2 实现 二、广度优先遍历2.1 定义2.2 实现 三、DFS与BFS的对比 引言 前置知识&…

linux用户管理运行级别找回root密码

目录 1.用户的添加 1.1用户添加的基本指令 1.2不指定家目录的名称 1.3指定家目录的名称 2.密码的修改 3.删除目录 3.1删除的两个情况 3.2删除的流程 4.查询用户的信息 5.用户的切换 6.用户组 6.1用户组的概念 6.2创建用户到指定的组 6.3修改用户到其他的组 6.4用…

SpringCloud Alibaba之Sentinel实现熔断与限流

(学习笔记) QPS(Query Per Second):即每秒查询率,是对⼀个特定的查询服务器在规定时间内所处理流量多少的衡量标准。QPS req/sec 请求数/秒,即每秒的响应请求数,也即是最⼤吞吐能⼒…

ATTCK实战系列-Vulnstack三层网络域渗透靶场(一)

ATT&CK实战系列-Vulnstack三层网络域渗透靶场(一) 一、环境搭建1.1 靶场拓扑图1.2 靶场下载链接1.3 虚拟机配置1.3.1 Windows 7 (web服务器)1.3.2 Windows 2008 (域控)1.3.3 Win2k3 (域内主机) 二、外网打点突破2.1 信息搜集2.2 phpmyadmin 后台 Get…

肾癌的多模态预测模型-临床-组织学-基因组

目录 摘要 技术路线 ① lncRNA的预测模型 ②病理 WSI 的分类器 ③临床病理分类器 模型结果 与别的模型比较 同行评审学习 1)使用lncRNA的原因 2)模型临床使用意义 3)关于截止值的使用 摘要 A multi-classifier system integrated…

.NET常见的5种项目架构模式

前言 项目架构模式在软件开发中扮演着至关重要的角色,它们为开发者提供了一套组织和管理代码的指导原则,以提高软件的可维护性、可扩展性、可重用性和可测试性。 假如你有其他的项目架构模式推荐,欢迎在文末留言🤞!&a…

Java_Day04学习

类继承实例 package com.dx.test03; public class extendsTest {public static void main(String args[]) {// 实例化一个Cat对象,设置属性name和age,调用voice()和eat()方法,再打印出名字和年龄信息/********* begin *********/Cat cat ne…

实战OpenCV之直方图

基础入门 直方图是对数据分布情况的图形表示,特别适用于图像处理领域。在图像处理中,直方图通常用于表示图像中像素值的分布情况。直方图由一系列矩形条(也被称为bin)组成,每个矩形条的高度表示某个像素值(…

鸿蒙设置,修改APP图标和名称

1、先看默认的图标和名称 2、打开项目开始设置自己需要的图标和名称 2.1找到 路径src\main\module.json5, 找到 abilities,下的,图标icon、名称label,label可以按住ctrl鼠标左键点击跳转 2.2先修改APP名称 1、ctrl鼠标左键点击…

华为OD机试 - 选修课(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…

【C语言零基础入门篇 - 15】:单链表

文章目录 单链表链表的基本概念单链表功能的实现单链表的初始化单链表新结点的创建单链表头插法单链表的输出单链表的查找单链表修改单链表的删除单链表所有数据结点释放源代码 单链表 链表的基本概念 一、什么是链表? 链表是数据结构中线性表的一种,其…

华为OD机试 - 需要打开多少监控器(Java 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(E卷D卷A卷B卷C卷)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加…

软考高级:数据库保持函数依赖和有损无损分解 AI 解读

讲解 生活化例子 想象你经营着一家快餐店,店里有各种商品,你也记录了每天的销量。你有一个表格,记录了「商品名称」、「价格」、「库存数量」、「供应商信息」等数据。最开始,你可能把所有数据都写在一张表上,但时间…

2024年9月22日---关于MyBatis框架(1)

一 Mybatis概述 1.1 简介 MyBatis(官网:mybatis – MyBatis 3 | 简介 )是一款优秀的开源的 持久层 框架,用于简化JDBC的开发。是 Apache的一个开源项目iBatis,2010年这个项目由apache迁移到了google code&#xff0c…

PCL 随机下采样

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更新) 一、概述 随机下采样 是一种常用的点…

类和对象(2)(重点)

个人主页:Jason_from_China-CSDN博客 所属栏目:C系统性学习_Jason_from_China的博客-CSDN博客 所属栏目:C知识点的补充_Jason_from_China的博客-CSDN博客 类的默认成员函数 概念概述 默认成员函数就是用户没有显式实现,编译器会自…

项目扩展一:信道池的实现

项目扩展一:信道池的实现 一、为何要设计信道池1.引入信道的好处2.为何要设计信道池 二、信道池的设计1.服务器需要设计信道池吗?2.设计:动态变化的信道池1.为什么?2.怎么办?1.动态扩容和缩容2.LRU风格的信道置换3.小总…

0基础学习HTML(十三)布局

HTML 布局 网页布局对改善网站的外观非常重要。 请慎重设计您的网页布局。 如何使用 <table> 元素添加布局。 网站布局 大多数网站会把内容安排到多个列中&#xff08;就像杂志或报纸那样&#xff09;。 大多数网站可以使用 <div> 或者 <table> 元素来创建…

软件测试分类篇(下)

目录 一、按照测试阶段分类 1. 单元测试 2. 集成测试 3. 系统测试 3.1 冒烟测试 3.2 回归测试 4. 验收测试 二、按照是否手工测试分类 1. 手工测试 2. 自动化测试 3. 手工测试和自动化测试的优缺点 三、按照实施组织分类 1. α测试(Alpha Testing) 2. β测试(Beta…

【LTW】Domain General Face Forgery Detection by Learning to Weight

文章目录 Domain General Face Forgery Detection by Learning to Weightkey points方法LTW元分割策略学习过程损失函数实验评价结果消融实验总结Domain General Face Forgery Detection by Learning to Weight 会议:AAAI-21 作者: code: https://github.com/skJack/LTW 上…