【算法题】63. 不同路径 II-力扣(LeetCode)-”如果起点有障碍物,那么便到不了终点“

【算法题】63. 不同路径 II-力扣(LeetCode)-”如果起点有障碍物,那么便到不了终点“

1.题目

下方是力扣官方题目的地址

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

img

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

img

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

2.题解

这题有两种思路:

思路一:深度优先搜索

思路二:动态规划

思路一

路径问题我们很容易想到的是深度优先来搜索出路径,进而求出结果。

我们将路径想象成树结构,本题要求只能向下或者向右,那么这棵树就是一颗二叉树,如图所示:

在这里插入图片描述

在结合这颗树进行深度优先搜索的时候注意一下边界条件以及路径中的障碍物,这个问题就很容易解决出来了

Python代码

class Solution(object):def uniquePathsWithObstacles(self, obstacleGrid):""":type obstacleGrid: List[List[int]]:rtype: int"""if obstacleGrid[0][0]==1:return 0 # 如果起点有障碍物,那么便到不了终点m=len(obstacleGrid)n=len(obstacleGrid[0])counts=0global countsdef dfs(x,y):global countsif x==m-1 and y==n-1:counts+=1returnfor dx,dy in [[1,0],[0,1]]:if 0<=x+dx<m and 0<=y+dy<n:  # 确保不会越界if obstacleGrid[x+dx][y+dy]!=1:dfs(x+dx,y+dy) # 以及不碰到障碍物dfs(0,0)return counts

不过显然这种方法比较低效,提交时显示的也是显示超时了

在这里插入图片描述

思路二

我们用dp[i,j]来表示从坐标 (0,0) 到坐标 (i,j) 的路径总数

那么dp[i,j]是怎么来的呢?

题目中要求只能向下或者向右走,那么反过来,坐标(i,j)只能由它的上方以及左方走过来,所以

dp[i,j]是dp[i-1,j]和dp[i,j-1]的路径总数的和

这里有一个细节需要注意:

dp元素的初始化值需要是0

这样即使(i,j)的左边或者上边有障碍物,也不影响得出的结果

所以我们可得出状态转移方程:

dp[i][j]=dp[i-1][j]+dp[i][j-1]

当然这题也有以下特殊的边界位置:第一行和第一列

其中起点位置最为特殊且如果起点有障碍物,那么无论无何也到不了终点:

if not obstacleGrid[0][0]:dp[0][0]=1
else:return 0

至于其它第一行的数,它们只能从左边走过来

以及其他第一列的数,它们只能从上边走过来

所以我们可以将它们先走完:

for i in range(1,n):if not obstacleGrid[0][i]:dp[0][i]=dp[0][i-1]
for j in range(1,m):if not obstacleGrid[j][0]:dp[j][0]=dp[j-1][0]

然后我们接着对剩下的位置进行模拟,利用状态转移方程,即可解决该问题

python代码

class Solution(object):def uniquePathsWithObstacles(self, obstacleGrid):""":type obstacleGrid: List[List[int]]:rtype: int"""m=len(obstacleGrid)n=len(obstacleGrid[0])dp=[[0]*n for _ in range(m)]    # 初始化dp数组if not obstacleGrid[0][0]:dp[0][0]=1else:return 0  # 如果起点有障碍物,那么便到不了终点 for i in range(1,n):if not obstacleGrid[0][i]:dp[0][i]=dp[0][i-1]       # 将特殊值模拟完for j in range(1,m):if not obstacleGrid[j][0]:dp[j][0]=dp[j-1][0]for i in range(1,m):for j in range(1,n):                        # 模拟其他正常位置if not obstacleGrid[i][j]:dp[i][j]=dp[i-1][j]+dp[i][j-1]      # 如果这个位置不是障碍物,则利用状态转移方程return dp[-1][-1]

3.结语

该题中,有一个细节:如果起点有障碍物的话,那么路径总数为0

就是本人在注释中所说的:“如果起点有障碍物,那么便到不了终点 ”。

如果不考虑这句话的绝对性,我们在学习算法的过程中何尝不是如此,万事开头难。

我相信,如果我们将学习算法的头给开好,在刚开始而又想放弃的时候再坚持一下,那么我们会在学习算法的道路上越走越远,越走越精通!希望大家在学习算法的过程中不断收获、不断成长!

本人资历尚浅,发博客主要是记录与学习,欢迎大佬们批评指教!大家也可以在评论区多多交流,相互学习,共同成长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1541958.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【全网最全】2024年华为杯研赛A题成品论文获取入口(后续会更新)

您的点赞收藏是我继续更新的最大动力&#xff01; 一定要点击如下的卡片&#xff0c;那是获取资料的入口&#xff01; 点击链接加入【2024华为杯研赛资料汇总】&#xff1a;https://qm.qq.com/q/hMgWngXvcQhttps://qm.qq.com/q/hMgWngXvcQ你是否在寻找数学建模比赛的突破点&am…

BUUCTF逆向wp [WUSTCTF2020]Cr0ssfun

第一步 查壳&#xff0c;本题是64位&#xff0c;无壳。 第二步 查看主函数&#xff0c;点开看主函数&#xff0c;没什么东西。 左边表里面看到好几个i开头的函数&#xff08;红色方框里面&#xff09;&#xff0c;点开看后每个函数的最后末尾&#xff08;图中红色椭圆圈那里&a…

(笔记自用)位运算总结+LeetCode例题:颠倒二进制位+位1的个数

一.位运算总结: 在解题之前理解一下为什么需要位运算&#xff1f;它的本质是什么&#xff1f; 力扣上不少位运算相关的题&#xff0c;并且很多题也会用到位运算的技巧。这又是为什么&#xff1f; 位运算的由来 在计算机里面&#xff0c;任何数据最终都是用数字来表示的&…

在Java中基于GeoTools的Shapefile读取乱码的问题解决办法

目录 前言 1、Shapefile属性字段编码的情况&#xff1a; 一、Shp文件常见的字符集编码 1、System编码 2、ISO-8859-1编码 3、UTF-8编码 二、GeoTools解析实战 1、未进行字符处理 2、乱码问题的解决 3、转码支持 4、属性字段编码结果 三、总结 前言 文件编码&#x…

分布式锁优化之 使用lua脚本改造分布式锁保证判断和删除的原子性(优化之LUA脚本保证删除的原子性)

文章目录 1、lua脚本入门1.1、变量&#xff1a;弱类型1.2、流程控制1.3、在lua中执行redis指令1.4、实战&#xff1a;先判断是否自己的锁&#xff0c;如果是才能删除 2、AlbumInfoApiController --》testLock()3、AlbumInfoServiceImpl --》testLock() 1、lua脚本入门 Lua 教程…

Linux基础命令以及常识

镜像站点服务器&#xff08;相当于下载的网址&#xff09;也可叫软件源 vim /etc/apt/sources.list 索引文件(网络服务器在本地的缓存) 服务器软件源在本地列出来一个清单&#xff0c;以便于主机进行查询操作 cd /var/lib/apt/lists/ 下载软件包默认存放路径 cd /var/cache/a…

认识NDK

什么是NDK&#xff08;Native Development Kit&#xff09; The Android NDK is a toolset that lets you implement parts of your app in native code, using languages such as C and C. &emdp; Android NDK 是一个工具集&#xff0c;可让您使用 C 和 C 等语言以原生代…

重型工程车辆数据集

重型工程车辆数据集&#xff0c;内含Bull_dozer&#xff08;推土机&#xff09;, Dumb_truck&#xff08;卡车&#xff09;, Excavator&#xff08;挖掘机&#xff09;, Grader&#xff08;平地机&#xff09;, Loader&#xff08;转载机&#xff09;, Mobile_crane&#xff08…

『功能项目』QFrameWork拾取道具UGUI【69】

本章项目成果展示 我们打开上一篇68QFrameWork扔到地上UGUI的项目&#xff0c; 本章要做的事情是实现当物品在地上时&#xff0c;点击物品将对应物品转移到道具栏中 制作一个提示UI界面 添加Button组件设置为点击即将父物体隐藏 拖拽到文件夹中在场景中删除 创建脚本&#xf…

架构师:使用 Zookeeper 实现分布式锁的技术指南

1、简述 在分布式系统中,多个节点可能需要访问共享资源或执行需要互斥的操作,为了避免竞争导致数据不一致或资源争用,我们需要一种机制来协调各个节点对资源的访问。分布式锁是用于解决这种竞争问题的关键技术,它确保在同一时间只有一个节点能够访问或修改共享资源。 2、Z…

Ansible部署与应用基础

由于互联网的快速发展导致产品更新换代速度逐步增长&#xff0c;运维人员每天都要进行大量的维护操作&#xff0c;按照传统方式进行维护使得工作效率低下。这时部署自动化运维就 可以尽可能安全、高效的完成这些工作。 一、Ansible概述 1.什么是Ansible Ansible 是基于 Pytho…

Matplotlib绘图基础

1、散点图 绘制散点图是数据可视化中非常常见的操作&#xff0c;它用于显示两组数据之间的关系。Matplotlib 提供了 plt.scatter() 函数&#xff0c;可以轻松绘制散点图。以下是一个基础的散点图示例代码&#xff0c;并包含了一些优化可视化呈现的技巧。 import matplotlib.p…

Python 如何调用讯飞星火大模型API

1 讯飞星火简介 讯飞星火是科大讯飞推出的一款先进的人工智能大模型&#xff0c;它具备强大的语言理解和知识问答能力&#xff0c;能够在多种场景中提供智能化服务。2024年6月27日&#xff0c;科大讯飞发布了讯飞星火大模型V4.0版本&#xff0c;全面对标GPT-4 Turbo。现有的模…

某采招网爬虫数据采集逆向

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 目标网站 aHR0cHM6Ly9zZWFyY2guYmlkY2VudGVyLmNvbS5jbi9zZWFyY2g/a2V5d29yZHM9JWU0…

医院伤员消费点餐限制———未来之窗行业应用跨平台架构

一、点餐上限 医院点餐上限具有以下几方面的意义&#xff1a; 1. 控制成本 - 有助于医院合理规划餐饮预算&#xff0c;避免食物的过度供应造成浪费&#xff0c;从而降低餐饮成本。 2. 保障饮食均衡 - 防止患者或陪护人员过度点餐某一类食物&#xff0c;有利于引导合…

基于51单片机的两路电压检测(ADC0808)

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机&#xff0c;通过ADC0808获取两路电压&#xff0c;通过LCD1602显示 二、硬件资源 基于KEIL5编写C代码&#xff0c;PROTEUS8.15进行仿真&#xff0c;全部资源在页尾&#xff0c;提供…

大数据Flink(一百二十三):五分钟上手Flink MySQL连接器

文章目录 五分钟上手Flink MySQL连接器 一、创建数据库表 二、​​​​​​创建session集群 三、源表查询 四、​​​​​窗口计算 五、​​​​​​结果数据写回数据库 五分钟上手Flink MySQL连接器 MySQL Connector可以将本地或远程的MySQL数据库连接到Flink中&#x…

【Spring Cloud Alibaba】Nacos

【Spring Cloud Alibaba】Nacos 1. 什么是Nacos&#xff0c;它都能干什么&#xff1f;1.1 注册中心演变及其思想1.2 Nacos Discovery1.3 远程调用流程图1.4 一个微服务的流程1.4 常用注册中心对比 2. Nacos Server部署3. Nacos Client搭建附录 1. 什么是Nacos&#xff0c;它都能…

科研绘图系列:R语言误差连线图(errobar linechart)

文章目录 介绍加载R包导入数据数据预处理画图系统信息介绍 误差连线图是一种在数据可视化中常用的图表,它通过在数据点处添加线段(误差线)来表示数据的变异性或不确定性。这些误差线可以基于不同的统计度量,如标准差(Standard Deviation)、标准误差(Standard Error)或…

docker操作的基本命令加容器的基本命令(仅供自己参考)

1、docker build&#xff1a;本地将一个docker文件打包成镜像 2、docker push&#xff1a;将自己打包的镜像传到镜像服务器上 3、docker pull&#xff1a;将镜像服务器上的镜像拉取到本地 4、docker images&#xff1a; 查看镜像服务器上的镜像 5、docker rmi&#xff1a;删…