集成学习详细介绍

以下内容整理于:

  1. 斯图尔特.罗素, 人工智能.现代方法 第四版(张博雅等译)
  2. 机器学习_温州大学_中国大学MOOC(慕课)
  3. XGBoost原理介绍------个人理解版_xgboost原理介绍 个人理解-CSDN博客

集成学习(ensemble):选择一个由一系列假设h1, h2, …, hn构成的集合,通过投票、平均或其他形式的机器学习方法将他们的预测进行组合。我们称单独的假设为基模型(base model),其组合后的模型称为集成模型(ensemble model)

集成学习主要有三种集成方法,Bagging(自主聚合法),boosting(提升法) 和stacking(堆叠法)。

在统计学中,有放回的重复采样方法被称为Bootstrap (自助法),Bagging是bootstrap aggregating的缩写。

目录

1. Bagging(自主聚合法)

随机森林模型(Random forest):

2. Boosting(提升法)

AdaBoost(adaptive boosting,自适应提升法):

XGBoost(eXtreme Gradient Boosting,极端梯度提升)算法:

GBDT(Gradient Boosting Decision Tree)算法:

LightGBM算法:

3. Stacking(堆叠法):


1. Bagging(自主聚合法)

从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:

Bagging可应用于任何类型的模型,但最常应用于决策树模型。

Bagging的优点:可以并行计算,非常高效。

随机森林模型(Random forest):

随机森林模型是Bagging在决策树模型上应用的一种形式。

主要思想:在分割点的属性选择上进行随机化,具体操作就是,假如我们总共有n个属性,在构建决策树为每个节点选择split属性时,在全部n个属性中随机挑选n1/2(即根号n)个属性作为属性子集(对于分类问题),或选择n/3个属性作为属性子集(对于回归问题),让算法只在这个子集中选择split属性。如此操作,使得随机森林模型实现了众多决策树基模型之间的低关联性或没有关联,而基础的Bagging做不到这一点。


2. Boosting(提升法)

序贯算法,按次序一一训练(实现上可以做到并行),生成一系列基模型。在序贯训练过程中,基模型使用的训练集每次都按照某种策略进行一定的调整。

AdaBoost(adaptive boosting,自适应提升法):

核心思想:给每个样例赋予一个权重Wj,该权重代表样例在训练过程中应计数的次数,样例的权重越大代表样例在模型训练的过程中发挥的作用越大。自适应提升法从训练集所有样例具有相等的权重wj开始,根据该训练集,我们训练第1个基模型h1,h1会对一些训练样例进行正确分类,而对另一些训练样例错误分类。我们希望第二个基模型能在被分类错误的样例中表现得更好,因此我们将增加在第一个基模型中被错误分类的样例的权重,同时减小在第一个基模型中被正确分类的样例的权重,然后开始训练第2个基模型………………按照次序,训练一系列的基模型。最后将所有基模型按照不同的权重综合成一个集成模型,预测效果比较好的树占有的权重大,预测效果差的基模型占了权重小。

后一个基模型的训练永远是在前一个基模型的基础上完成的!


XGBoost(eXtreme Gradient Boosting,极端梯度提升)算法:

XGBoost算法又快又准确,颇受欢迎!

XGBoost算法是一种加法模型,往模型中不断添加新的树。XGBoost算法将模型上一次预测(由t-1棵树组合而成的模型)产生的误差作为参考建立下一棵树(第t棵树)

加法策略:

初始化(模型中没有树时,其预测结果为0):

往模型中加入第一棵树:

往模型中加入第二棵树:这里的f2即为由上一次预测产生的误差作为参考建立的第2棵树,f2(xi)为第2棵树的预测结果。

…………

往模型中加入第t棵树:

其中表示第棵树,表示组合了棵树的模型对样本的预测结果。

注:一棵树等同于基模型


GBDT(Gradient Boosting Decision Tree)算法:

是一种迭代的决策树算法,该算法由多棵决策树组成,GBDT和XGBoost算法很相似,都是累加所有树的结果作为最终结果,两者的区别在于两者对目标函数(即代价函数)的求解过程不同,GBDT算法在求解过程中用到了残差(residual)思想,XGBoost算法在求解过程中用到了n阶泰勒展开的思想。其他方面,两者基本无区别。

GBDT算法的代价函数的部分求解过程:

泰勒展开式:

XGBoost算法的代价函数的部分求解过程:

XGBoost算法代价函数详细求解过程请参考:XGBoost原理介绍------个人理解版_xgboost原理介绍 个人理解-CSDN博客


LightGBM算法:

LightGBM算法是以XGBoost算法为基础改进的算法,相较于XGBoost算法,LightGBM算法训练速度更快,内存占用更少。XGBoost算法和LightGBM算法都是目前使用较多的算法。

LightGBM与XGBoost相比,主要有以下几个改进:
• 基于梯度的单边采样算法(Gradient-based One-Side Sampling, GOSS);
• 互斥特征捆绑算法(Exclusive Feature Bundling, EFB);
• 直方图算法(Histogram);
• 基于最大深度的 Leaf-wise 的垂直生长算法;
LightGBM = XGBoost + GOSS + EFB+ Histogram


3. Stacking(堆叠法):

在相同训练集中使用不同基模型类训练多个基模型,然后将这些基模型组合成集成模型。

将训练好的所有基模型对训练集进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,然后使用(来自基模型预测的)新的训练集和预先留出的验证数据对集成模型进行训练。

这种方法适合于团队分工,团队内的每个人独立工作,使用共同的训练集训练完善自己负责的基模型,最后把每个人的基模型汇聚到一起,建立最终的堆叠集成模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1541415.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C++/Qt 集成 AutoHotkey

C/Qt 集成 AutoHotkey 前言AutoHotkey 介绍 方案一:子进程启动编写AutoHotkey脚本准备 AutoHotkey 运行环境编写 C/Qt 代码 方案二:显式动态链接方案探索编译动态链接库集成到C工程关于AutoHotkeyDll.dll中的函数原型 总结 前言 上一篇介绍了AutoHotkey…

从理论再到实践:AI大模型学习路线,提升核心竞争力,看这篇就够了

一、初聊大模型 1、什么是大模型? 大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型&#…

基于 Qwen2.5-Coder 模型和 CrewAI 多智能体框架,实现智能编程系统的实战教程

9 月 19 日,阿里开源了 Qwen2.5 系列大模型全家桶:除常规的语言模型 Qwen2.5 之外,还发布了专门针对编程的Qwen2.5-Coder模型和数学的 Qwen2.5-Math 模型,并且针对每个模型都提供了不同规模参数版本,包括: …

CSP-CCF★★★201909-2小明种苹果(续)★★★

一、问题描述 二、解答 关键:判断是否发生苹果掉落,使用flag[]数组来标记,1为掉落,0为没有掉落,这样也是为了后续比较连续三棵树是否掉落 误区:用最后一次正数(即最后一次统计苹果个数&#x…

芯片开发(1)---BQ76905---底层参数配置

主要开发思路:AFE主要是采集、保护功能、均衡,所以要逐一去配置芯片的寄存器 采集、均衡功能主要是配置引脚 保护功能主要是参数寄存器配置,至于如何使用命令修改寄存器参数该系列芯片提供了子命令和直接命令两种方式 BQ76905的管脚配置 I、参数配置 …

AI赋能篇:万物皆可播,AI视频直播新趋势,轻松打造24h不间断开播!

AI赋能篇:万物皆可播,AI视频直播新趋势,轻松打造24h不间断开播! 在数字化浪潮的推动下,人工智能(AI)正以前所未有的速度渗透到我们生活的每一个角落,其中,AI视频直播作为…

工控一体机在高精度玻璃检测机中的应用

工控一体机在高精度玻璃检测机中的应用主要体现在以下几个方面: 一、数据采集与处理 工控一体机作为工业控制计算机,能够高效采集来自高精度玻璃检测机中各种传感器和执行器的数据。这些数据包括但不限于玻璃表面的图像信息、厚度、温度、光学特性等。…

05 基于STM32的DHT11温湿度获取及OLED显示(库函数)

本专栏所有源资料都免费获取,无任何隐形消费。 注意事项:STM32仿真会存在各种各样BUG,且尽量按照同样仿真版本使用。本专栏所有的仿真都采用PROTEUS8.15。 本文已经配置好STM32F103C8T6系列,在PROTUES仿真里,32单片机一般只用一种型号,如需其他型号,可改名。 本次功能…

初中数学证明集锦之三角形内角和

导言 非常喜欢数学那套,由简单到复杂,逐层递进的证明之美。 既证了,而且明了 😃 让人不得不信服! 由人教版教材看到的三角形内角和180度的证明法,觉得现在课本不单传播了知识,而且点睛数学之…

STM32CubeIDE | 使用HAL库的ADC读取内部传感器温度

1、cubemx配置 1.1、系统配置 1.2、GPIO配置 PB2设置为“GPIO_Output” user label设置为“LED” 1.3、串口配置 模式选择为“Asynchronous”,其他默认 1.4、时钟树配置 全部保持默认 2、ADC配置 通道选择“Temperature Sensor Channel”,其他默认 …

一个 ospf 的 hub-spoke 例子

一、拓扑: 要求:利用 ospf igp配置,使两个 Spoke 之间的流量经过 Hub 端 二、配置思路: 1、基本环境搭建: SW1 起 vlan 10、20、30; 配置 G0/0/1、2、3 接口分别为 hybrid 类型(默认&…

自建数据库VS云数据库:从《中国数据库前世今生》看未来数据管理的抉择

自建数据库VS云数据库:从《中国数据库前世今生》看未来数据管理的抉择 在数字化时代的滚滚洪流中,数据库作为核心数据管理工具,始终扮演着至关重要的角色。最近观看了纪录片《中国数据库前世今生》,让我对数据库技术的发展有了更…

cesium.js 入门到精通(5-2)

在cesium 的配置中 有一些参数 可以配置地图的显示 显示出 水的动态显示 山的效果 相当于一些动画显示的效果 var viewer new Cesium.Viewer("cesiumContainer", {infoBox: false,terrainProvider: await Cesium.createWorldTerrainAsync({requestWaterMask: tru…

漏洞复现_永恒之蓝

1.概述 永恒之蓝(EternalBlue)是一个影响Windows操作系统的远程代码执行漏洞,编号为CVE-2017-0144,最初由美国国家安全局(NSA)开发并利用,后来被黑客组织Shadow Brokers泄露。该漏洞存在于SMBv…

自注意力(self_attention)和位置编码

目录 1.自注意力(self_attention)公式 2.代码实现 2.1位置编码的代码实现 3.知识点个人理解 1.自注意力(self_attention)公式 2.代码实现 import math import torch from torch import nn import dltoolsnum_hiddens, num_he…

assign是赋值,不是连接

如下图是一个top文件的背压 如果把原本应该是外界输入的变量m_ip_hdr_ready通过phv_parser_hdr_ready来“赋值!!!”,那么模块内部本该有的ready信号,就会是Z高阻态,因为没有给到值。 正确的赋值 将整个模…

GEE教程:利用sentinel-2数据进行ndwi和ndci指数的计算和下载

目录 简介 函数 normalizedDifference(bandNames) Arguments: Returns: Image Export.image.toDrive(image, description, folder, fileNamePrefix, dimensions, region, scale, crs, crsTransform, maxPixels, shardSize, fileDimensions, skipEmptyTiles, fileFormat, …

2024年双十一不容错过的好物分享,最值得买的几款超值单品

2024的“双11”购物狂欢节即将要拉开帷幕,大家有没有物色到心仪的好物呢?平时看中的某一件商品,总想着在最低价时入手,毫无疑问双十一就是最佳时机,毕竟各大电商平台都会推出优惠活动。为此我也特意整理了一份数码好物…

【YOLO目标检测学生课堂行为数据集】共4266张、已标注txt格式、有训练好的yolov5的模型

目录 说明图片示例 说明 数据集格式:YOLO格式 图片数量:4266 标注数量(txt文件个数):4266 标注类别数:3 标注类别名称:hand、read、write 数据集下载:学生课堂行为数据集 图片示例 数据集图片&#…