【机器学习(八)】分类和回归任务-因子分解机(Factorization Machines,FM)-Sentosa_DSML社区版

文章目录

  • 一、算法概念
  • 二、算法原理
    • (一) FM表达式
    • (二)时间复杂度
    • (三)回归和分类
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、FM分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、FM回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念

  因子分解机(Factorization Machines, FM)是一种基于矩阵分解的机器学习算法,主要解决高维稀疏数据下的特征交互和参数估计问题。FM 通过引入特征组合和隐向量的矩阵分解来提升模型表现,特别适合处理推荐系统等场景中的数据稀疏性和特征交互复杂性。

  FM 可以用于分类和回归任务,是线性模型的扩展,能够高效地捕捉特征之间的交互作用。FM 的核心是通过低维向量的内积表示特征交互,使得其参数数量随维度线性增长,从而降低计算复杂度。
在这里插入图片描述
  FM 的主要特点:
   ∙ \bullet 有监督学习模型,适用于回归和分类任务。
   ∙ \bullet 通过低维向量的内积表示特征交互,模型结构保持线性。
   ∙ \bullet 常用训练方法:随机梯度下降(SGD)、交替最小二乘法(ALS)和马尔可夫链蒙特卡洛(MCMC)。
  FM 模型通过矩阵分解对特征交互建模,并且在处理稀疏数据时有显著优势,常用于推荐系统。

二、算法原理

(一) FM表达式

  为了使系统能够进行预测,它依赖于由用户事件记录生成的可用数据。这些数据是表示兴趣和意图的交易记录,例如:下载、购买、评分。
  对于一个电影评论系统来说,交易数据记录了用户 u ∈ U u \in U uU 在某一时间 t ∈ R t \in R tR 对电影(物品) i ∈ I i \in I iI 给出的评分 r ∈ { 1 , 2 , 3 , 4 , 5 } r \in\{1, 2, 3, 4, 5 \} r{1,2,3,4,5} ,由此产生的数据集可以表示如下:
在这里插入图片描述
  用于预测的数据表示为一个矩阵 X ∈ R m × n X \in\mathbb{R}^{m \times n} XRm×n ,其中包含总共 m m m 个观测值,每个观测值由一个实值特征向量 x ∈ R n x \in\mathbb{R}^{n} xRn 组成。来自上述数据集的特征向量可以表示为:
在这里插入图片描述
  其中, n = ∣ U ∣ + ∣ I ∣ + ∣ T ∣ n=| U |+| I |+| T | n=U+I+T ,即 x ∈ R n x \in\mathbb{R}^{n} xRn 也可以表示为 x ∈ R ∣ U ∣ + ∣ I ∣ + ∣ T ∣ x \in\mathbb{R}^{| U |+| I |+| T |} xRU+I+T ,其中训练数据集的表达式为 D = { ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , … , ( x ( m ) , y ( m ) ) } D=\{( x^{( 1 )}, y^{( 1 )} ), ( x^{( 2 )}, y^{( 2 )} ), \ldots, ( x^{( m )}, y^{( m )} ) \} D={(x(1),y(1)),(x(2),y(2)),,(x(m),y(m))} 。训练目标是估计一个函数 y ^ ( x ) : R n → R \hat{y} ( x ) : \mathbb{R}^{n} \to\mathbb{R} y^(x):RnR ,当提供第 i i i x i ∈ R n x_{i} \in\mathbb{R}^{n} xiRn 作为输入时,能够正确预测对应的目标值 y i ∈ R y_{i} \in\mathbb{R} yiR
  FM模型的计算表达式如下所示:
在这里插入图片描述
   < v i , v j > < {\mathbf{v}}_{i}, {\mathbf{v}}_{j} > <vi,vj> 是交叉特征的参数,可以由一组参数定义:
< v i , v j > = w ^ i , j = ∑ f = 1 k v i , f × v j , f < {\mathbf{v}}_{i}, {\mathbf{v}}_{j} >=\hat{w}_{i, j}=\sum_{f=1}^{k} v_{i, f} \times v_{j, f} <vi,vj>=w^i,j=f=1kvi,f×vj,f
  当 k k k 足够大时,对于任意对称正定的实矩阵 W ^ ∈ R n × n \widehat{W} \in\mathbb{R}^{n \times n} W Rn×n ,均存在实矩阵 V ∈ R n × k V \, \in\, \mathbb{R}^{n \times k} VRn×k ,使得 W ^ = V V ⊤ \widehat{W}=V V^{\top} W =VV成立:
W ^ = [ w ^ 1 , 1 w ^ 1 , 2 ⋯ w ^ 1 , n w ^ 2 , 1 w ^ 2 , 2 ⋯ w ^ 2 , n ⋮ ⋮ ⋱ ⋮ w ^ n , 1 w ^ n , 2 ⋯ w ^ n , n ] = V T V = [ v 1 T v 2 T ⋮ v n T ] [ v 1 v 2 ⋯ v n ] \hat{\mathbf{W}} = \begin{bmatrix} \hat{w}_{1,1} & \hat{w}_{1,2} & \cdots & \hat{w}_{1,n} \\ \hat{w}_{2,1} & \hat{w}_{2,2} & \cdots & \hat{w}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{w}_{n,1} & \hat{w}_{n,2} & \cdots & \hat{w}_{n,n} \end{bmatrix} = \mathbf{V}^{T} \mathbf{V} = \begin{bmatrix} {\mathbf{v}}_1^{T} \\ {\mathbf{v}}_2^{T} \\ \vdots \\ {\mathbf{v}}_n^{T} \end{bmatrix} \begin{bmatrix} {\mathbf{v}}_1 &{\mathbf{v}}_2 & \cdots & {\mathbf{v}}_n \end{bmatrix} W^= w^1,1w^2,1w^n,1w^1,2w^2,2w^n,2w^1,nw^2,nw^n,n =VTV= v1Tv2TvnT [v1v2vn]
  其中,模型待求解的参数为:
w 0 ∈ R , w ∈ R n , V ∈ R n × k w_{0} \in\mathbb{R}, \quad\mathbf{w} \in\mathbb{R}^{n}, \quad\mathbf{V} \in\mathbb{R}^{n \times k} w0R,wRn,VRn×k
  其中:
   ∙ \bullet w 0 w_{0} w0 表示全局偏差。
   ∙ \bullet w i w_{i} wi 用于捕捉第 i i i 个特征和目标之间的关系。
   ∙ \bullet w ^ i , j \hat{w}_{i, j} w^i,j 用于捕捉 ( i , j ) ( i, j ) (i,j) 二路交叉特征和目标之间的关系。
   ∙ \bullet v i {\mathbf{v}}_{i} vi 代表特征 i i i 的表示向量,它是 V \mathbf{V} V 的第 i i i 列。

(二)时间复杂度

  根据FM模型计算表达式,可以得到模型的计算复杂度如下:
{ n + ( n − 1 ) } + { n ( n − 1 ) 2 [ k + ( k − 1 ) + 2 ] + n ( n − 1 ) 2 − 1 } + 2 = O ( k n 2 ) , \{n+( n-1 ) \}+\left\{\frac{n ( n-1 )} {2} [ k+( k-1 )+2 ]+\frac{n ( n-1 )} {2}-1 \right\}+2={ O} ( k n^{2} ), {n+(n1)}+{2n(n1)[k+(k1)+2]+2n(n1)1}+2=O(kn2),
  通过对交叉项的分解和计算,可以降低时间复杂度为 O ( k n ) { O} ( k n ) O(kn),计算过程如下所示:
在这里插入图片描述
  对于交叉特征,它们的交叉矩阵是一个对称矩阵,这里通过对一个 3x3 对称矩阵的详细分析,展示如何通过减少自交互项和利用对称性来优化计算。最终的结果是简化方程,并且将计算复杂度从二次方降低为线性级别,使模型能够更加高效地处理稀疏数据场景。
  首先,使用一个 3x3 的对称矩阵,图中表达式为计算目标:在这里插入图片描述
  对目标表达式进行展开,展开后对内积进行计算,左式表示 3x3 对称矩阵的一半(对称矩阵的上三角部分)
在这里插入图片描述
  右式表示需要从左式中减去的部分,右式为对称矩阵中自交互的部分,即对角线部分的计算。
在这里插入图片描述
  最终推导,得到:
y ^ ( x ) = w 0 + ∑ i = 1 n w i × x i + 1 2 ∑ f = 1 k ( ( ∑ i = 1 n v i , f × x i ) 2 − ∑ i = 1 n v i , f 2 × x i 2 ) \hat{y} ( {\bf x} )=w_{0}+\sum_{i=1}^{n} w_{i} \times x_{i}+\frac{1} {2} \sum_{f=1}^{k} \left( \left( \sum_{i=1}^{n} v_{i, f} \times x_{i} \right)^{2}-\sum_{i=1}^{n} v_{i, f}^{2} \times x_{i}^{2} \right) y^(x)=w0+i=1nwi×xi+21f=1k (i=1nvi,f×xi)2i=1nvi,f2×xi2
  其计算复杂度为 O ( k n ) { O} ( k n ) O(kn) k { [ n + ( n − 1 ) + 1 ] + [ 3 n + ( n − 1 ) ] + 1 } + ( k − 1 ) + 1 = O ( k n ) k \{[ n+( n-1 )+1 ]+[ 3 n+( n-1 ) ]+1 \}+( k-1 )+1={\cal O} ( k n ) k{[n+(n1)+1]+[3n+(n1)]+1}+(k1)+1=O(kn)

(三)回归和分类

  FM 模型可以用于求解分类问题,也可以用于求解回归问题。在回归任务中,FM 的输出 y ^ ( x ) \hat{y} ( {\bf x} ) y^(x)可以直接作为连续型预测变量。目标是优化回归损失函数,
  最小二乘误差(MSE):最小化预测值与实际值之间的均方误差。损失函数表达式如下所示:
l ( y ^ ( x ) , y ) = ( y ^ ( x ) − y ) 2 l(\hat{y}(x), y) = (\hat{y}(x) - y)^2 l(y^(x),y)=(y^(x)y)2
  对于二分类问题,使用的是Logit或Hinge损失函数:
l ( y ^ ( x ) , y ) = − ln ⁡ σ ( y ^ ( x ) y ) l(\hat{y}(x), y) = -\ln \sigma(\hat{y}(x) y) l(y^(x),y)=lnσ(y^(x)y)
  其中,σ 是Sigmoid(逻辑函数),𝑦∈{−1,1}。在二分类任务中,模型输出的是类别的概率,Sigmoid函数将其转换为0到1之间的概率值,而损失函数则度量预测值与真实分类之间的偏差。FMs 容易出现过拟合问题,因此应用 L2 正则化来防止过拟合。正则化有助于减少模型的复杂性,防止模型在训练数据上过度拟合,从而提升模型在新数据上的泛化能力。
  模型训练好后,就可以利用 y ^ ( x ) \widehat{y} ( \mathbf{x} ) y (x) 的正负符号来预测 x \mathbf{x} x 的分类了。

  最后,FM 模型方程的梯度可以表示如下:
∂ ∂ θ y ^ ( x ) = { 1 , 如果 θ 是 w 0 x i , 如果 θ 是 w i x i ∑ j = 1 n v j f x j − v i f x i 2 , 如果 θ 是 v i , f \frac{\partial}{\partial \theta} \hat{y}(x) = \begin{cases} 1, & \text{如果} \, \theta \, \text{是} \, w_0 \\ x_i, & \text{如果} \, \theta \, \text{是} \, w_i \\ x_i \sum_{j=1}^{n} v_j^f x_j - v_i^f x_i^2, & \text{如果} \, \theta \, \text{是} \, v_{i,f} \end{cases} θy^(x)= 1,xi,xij=1nvjfxjvifxi2,如果θw0如果θwi如果θvi,f
  其中,
   ∙ \bullet 当参数是 w 0 w_{0} w0 时,梯度为常数1。
   ∙ \bullet 当参数是 w i w_{i} wi 时,梯度为 x i x_{i} xi ,即特征 i i i 的值。
   ∙ \bullet 当参数是 v i , f v_{i, f} vi,f 时,梯度更复杂,包含一个交互项 x i ∑ j = 1 n v j f x j x_{i} \sum_{j=1}^{n} v_{j}^{f} x_{j} xij=1nvjfxj 减去一个二次项 v i f x i 2 v_{i}^{f} x_{i}^{2} vifxi2 。这里
v j f v_{j}^{f} vjf 是对应特征 j j j 的因子向量的第 f f f 个元素。
  求和项 ∑ j = 1 n v j f x j \sum_{j=1}^{n} v_{j}^{f} x_{j} j=1nvjfxj i i i 无关,因此可以提前计算。这样,每个梯度都可以在常数时间 O ( 1 ) O ( 1 ) O(1) 内计算出来,而所有参数的更新可以在 O ( k n ) O(kn) O(kn) 或稀疏条件下的 O ( k N z ( x ) ) O(kN_z(x)) O(kNz(x))内完成,其中 k k k是因子维度, n n n是特征数量, N z ( x ) N_z(x) Nz(x)是非零特征的数量。

三、算法优缺点

(一)优点

  1、解决了特征稀疏的问题,能够在非常系数数据的情况下进行预估
  2、解决了特征组合的问题
  3、FM是一个通用模型,适用于大部分场景
  4、线性复杂度,训练速度快

(二)缺点

  虽然考虑了特征的交互,但是表达能力仍然有限,不及深度模型;通过矩阵结构来建模特征之间的二阶交互交互作用,假设所有特征的权重都可以通过隐式支持来串联,但实际上某些特征交互可能比其他特征交互更重要,这种统一的串联有时无法捕捉复杂的交互关系。

四、FM分类任务实现对比

  使用 PySpark 的 FMClassifier 进行分类任务

(一)数据加载和样本分区

1、Python代码

# 创建 Spark 会话
spark = SparkSession.builder \.appName("FMClassifierExample") \.getOrCreate()# 加载 Iris 数据集
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target# 将数据转换为 DataFrame
df = pd.DataFrame(X, columns=iris.feature_names)
df['label'] = y# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)# 将特征列组合成一个单独的特征列
assembler = VectorAssembler(inputCols=iris.feature_names, outputCol="features")
spark_df = assembler.transform(spark_df).select(col("label"), col("features"))# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),
在这里插入图片描述
  然后,连接行处理中的样本分区算子对数据进行训练集和测试集的划分,比例为8:2,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列。
在这里插入图片描述

(二)模型训练

1、Python代码

from pyspark.sql import SparkSession
from pyspark.ml.classification import FMClassifier# 创建 FMClassifier 模型
fm = FMClassifier(featuresCol="features",labelCol="label",predictionCol="prediction",probabilityCol="probability",rawPredictionCol="rawPrediction",factorSize=8,fitIntercept=True,fitLinear=True,regParam=0.01,miniBatchFraction=1.0,initStd=0.01,maxIter=100,stepSize=0.01,tol=1e-06,solver="adamW",thresholds=[0.5],  # 设置分类阈值seed=42
)# 训练模型
fm_model = fm.fit(train_df)# 进行预测
predictions = fm_model.transform(test_df)# 显示预测结果
predictions.select("features", "label", "prediction", "probability").show()

2、Sentosa_DSML社区版

  连接因子分解机分类算子,右侧设置模型参数等信息,点击应用后,右击算子并执行,得到因子分解机分类模型。如下图所示,
在这里插入图片描述
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns# 从 PySpark DataFrame 提取预测结果
predictions_df = predictions.select("label", "prediction").toPandas()
y_test_sklearn = predictions_df['label'].values
y_pred_sklearn = predictions_df['prediction'].values# 评估模型
accuracy = accuracy_score(y_test_sklearn, y_pred_sklearn)
precision = precision_score(y_test_sklearn, y_pred_sklearn, average='weighted')
recall = recall_score(y_test_sklearn, y_pred_sklearn, average='weighted')
f1 = f1_score(y_test_sklearn, y_pred_sklearn, average='weighted')# 打印评估结果
print(f"FM 模型的准确率: {accuracy:.2f}")
print(f"加权精度 (Weighted Precision): {precision:.2f}")
print(f"加权召回率 (Weighted Recall): {recall:.2f}")
print(f"F1 值 (Weighted F1 Score): {f1:.2f}")# 计算混淆矩阵
cm = confusion_matrix(y_test_sklearn, y_pred_sklearn)

2、Sentosa_DSML社区版

  模型后可接任意个数据处理算子,比如图表分析算子或数据写出算子,形成算子流执行,也可接评估算子,对模型的分类结果进行评估。如下图所示:在这里插入图片描述
  得到训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,可以查看模型的模型信息,模型信息如下图所示:
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

五、FM回归任务实现对比

  利用python代码,结合 PySpark 和 pandas 处理数据,主要应用了 Spark 的 FMRegressor 进行回归分析。

(一)数据加载和样本分区

1、Python代码

# 读取 winequality 数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")
df = df.dropna()  # 处理缺失值# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)# 将特征列组合成一个单独的特征列
feature_columns = df.columns.tolist()
feature_columns.remove('quality')
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
spark_df = assembler.transform(spark_df).select("features", "quality")# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  先读取需要数据集,
在这里插入图片描述
  然后连接样本分区算子对数据集进行训练集和测试集的划分,划分比例为8:2,
在这里插入图片描述
  再接类型算子设置Feature列和Label列(Label列需满足:能转换为Double类型或者就是Double类型)
在这里插入图片描述

(二)模型训练

1、Python代码

# 创建 FMRegressor 模型
fm_regressor = FMRegressor(featuresCol="features",labelCol="quality",predictionCol="prediction",factorSize=8,fitIntercept=True,fitLinear=True,regParam=0.01,miniBatchFraction=1.0,initStd=0.01,maxIter=100,stepSize=0.01,tol=1e-06,solver="adamW",seed=42
)# 训练模型
fm_model = fm_regressor.fit(train_df)# 对测试集进行预测
predictions = fm_model.transform(test_df)

2、Sentosa_DSML社区版

  连接因子分解机回归算子,
在这里插入图片描述
  右击算子,点击运行,得到因子分解机回归模型。如下图所示:
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 评估模型
evaluator = RegressionEvaluator(predictionCol="prediction",labelCol="quality",metricName="r2"
)
r2 = evaluator.evaluate(predictions)
evaluator_mae = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mae")
mae = evaluator_mae.evaluate(predictions)
evaluator_mse = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mse")
mse = evaluator_mse.evaluate(predictions)
rmse = np.sqrt(mse)# 打印评估结果
print(f"R²: {r2:.4f}")
print(f"MAE: {mae:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")# 将预测值转换为 Pandas DataFrame 以便绘图
predictions_pd = predictions.select("quality", "prediction").toPandas()
y_test = predictions_pd["quality"]
y_pred = predictions_pd["prediction"]# 绘制实际值与预测值的对比图
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, color="blue", alpha=0.6)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--')
plt.xlabel('Actual Quality')
plt.ylabel('Predicted Quality')
plt.title('Actual vs Predicted Wine Quality')
plt.show()# 计算残差
residuals = y_test - y_pred# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

2、Sentosa_DSML社区版

  模型后接评估算子,对模型结果进行评估。算子流如下图所示:
在这里插入图片描述
  训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息:
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1539582.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【ShuQiHere】 探索数据挖掘的世界:从概念到应用

&#x1f310; 【ShuQiHere】 数据挖掘&#xff08;Data Mining, DM&#xff09; 是一种从大型数据集中提取有用信息的技术&#xff0c;无论是在商业分析、金融预测&#xff0c;还是医学研究中&#xff0c;数据挖掘都扮演着至关重要的角色。本文将带您深入了解数据挖掘的核心概…

机械设备产品资料方案介绍小程序系统开发制作

设备产品资料介绍小程序系统&#xff0c;是一家工业机械设备生产厂家为了更好的服务客户而定制开发的一套小程序系统&#xff0c;让用户通过小程序就可以了解公司产品介绍的详细参数、售后服务和产品操作手持等。 该小程序系统里面主要开发的功能模块有&#xff1a; 1、产品目…

智慧课堂学生行为数据集

智慧校园数据集合集概述 智慧校园旨在通过整合先进的信息技术来提升教育环境的安全性、效率以及互动性。一个关键组成部分是利用计算机视觉技术对校园内的各种活动进行监控与分析。为此&#xff0c;构建了一个全面的数据集合集&#xff0c;包含了密集行人、头部检测、抽烟行为…

一个手机号注册3个抖音号的绿色方法?一个人注册多个抖音号的方法!

下面这是我注册的新账号&#xff0c;显示未实名&#xff0c;在手机号这里显示辅助手机号绑定&#xff0c;手机号绑定这里显示未绑定。如果你需要矩阵&#xff0c;那么&#xff0c;还需要设置好头像&#xff0c;以及介绍&#xff0c;这些都可以正常设置。 再好的方法&#xff0c…

C++笔记21•C++11的新特性•

相比于 C98/03&#xff0c;C11则带来了数量可观的变化&#xff0c;其中包含了约140个新特性&#xff0c;以及对C03标准中约600个缺陷的修正&#xff0c;这使得C11更像是从C98/03中孕育出的一种新语言。相比较而言&#xff0c;C11能更好地用于系统开发和库开发、语法更加泛华和简…

VS code 创建与运行 task.json 文件

VS code 创建与运行 task.json 文件 引言正文创建 .json 文件第一步第二步第三步 运行 .json 文件 引言 之前在 VS code EXPLORER 中不显示指定文件及文件夹设置&#xff08;如.pyc, pycache, .vscode 文件&#xff09; 一文中我们介绍了 settings.json 文件&#xff0c;这里我…

唯徳知识产权管理系统 UploadFileWordTemplate 任意文件读取

0x01 漏洞描述&#xff1a; 唯徳于2014年成立&#xff0c;是专业提供企业、代理机构知识产权管理软件供应商&#xff0c;某公司凭借领先的技术实力和深厚的专利行业积累&#xff0c;产品自上市推广以来&#xff0c;已为1000多家企业及代理机构提供持续稳定的软件服务。其知识产…

安卓13长按电源按键直接关机 andriod13不显示关机对话框直接关机

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析4.代码修改5.编译6.彩蛋1.前言 有些设备需要在长按电源键的时候,直接关机。不需要弹出对话框进行询问。 2.问题分析 过滤电源按键,需要在系统里面处理的话,那么我们需要熟悉android的事件分发,然后再…

L67 【哈工大_操作系统】操作系统历史 学习任务

L6 操作系统历史 线条一 1、上古神机 IBM7094 专注于计算批处理操作系统&#xff08;Batch system&#xff09; 2、OS/360 一台计算机干多种事&#xff0c;多道程序作业之间的 切换和调度 成为核心 &#xff08;多进程结构和进程管理概念萌芽&#xff01;&#xff09; 3…

链式栈讲解

文章目录 &#x1f34a;自我介绍&#x1f34a;链式栈入栈和出栈linkstack.hlinkstack.c 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以&#xff1a;点赞关注评论收藏&#xff08;一键四连&#xff09;哦~ &#x1f34a;自我介绍 Hello,大家好&#xff0c;我是小珑也要…

《黑神话悟空》开发框架与战斗系统解析

本文主要围绕《黑神话悟空》的开发框架与战斗系统解析展开 主要内容 《黑神话悟空》采用的技术栈 《黑神话悟空》战斗系统的实现方式 四种攻击模式 连招系统的创建 如何实现高扩展性的战斗系统 包括角色属性系统、技能配置文件和逻辑节点的抽象等关键技术点 版权声明 本…

考研数据结构——C语言实现有向图邻接矩阵

首先&#xff0c;定义了一些基本的数据结构和常量&#xff1a; VertexType&#xff1a;顶点的数据类型&#xff0c;这里定义为char。EdgeType&#xff1a;边的数据类型&#xff0c;这里定义为int&#xff0c;用于存储权重。MAXVEX&#xff1a;定义了图中最大顶点数为100。INFIN…

详细解读,F5服务器负载均衡的技术优势

在现代大规模、高流量的网络使用场景中&#xff0c;为应对高并发和海量数据的挑战&#xff0c;服务器负载均衡技术应运而生。但凡知道服务器负载均衡这一名词的&#xff0c;基本都对F5有所耳闻&#xff0c;因为负载均衡正是F5的代表作&#xff0c;换句通俗易懂的话来说&#xf…

前端vue-关于标签切换的实现

首先是循环&#xff0c;使用v-for“&#xff08;item,index) in list” :key“item.id” 然后当点击哪个的时候再切换&#xff0c;使用v-bind:class" "或者是:class" ",如果都是用active的话&#xff0c;那么每一个标签都是被选中的状态&#xff0c;…

Android IME输入法启动显示隐藏流程梳理

阅读Android AOSP 12版本代码&#xff0c;对输入法IME整体框架模块进行学习梳理&#xff0c;内容包含输入法框架三部分IMM、IMMS、IMS的启动流程、点击弹出流程、显示/隐藏流程&#xff0c;以及常见问题和调试技巧。 1. IME整体框架​​​​​​​ IME整体分为三个部分&#xf…

Log4j2—漏洞分析(CVE-2021-44228)

文章目录 Log4j2漏洞原理漏洞根因调用链源码分析调用链总结 漏洞复现dnsrmi Log4j2漏洞原理 前排提醒&#xff1a;本篇文章基于我另外一篇总结的JNDI注入后写的&#xff0c;建议先看该文章进行简单了解JNDI注入&#xff1a; https://blog.csdn.net/weixin_60521036/article/de…

茴香豆:企业级知识问答工具实践闯关任务

基础任务 在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手&#xff0c;并使用 Gradio 界面完成 2 轮问答&#xff08;问题不可与教程重复&#xff0c;作业截图需包括 gradio 界面问题和茴香豆回答&#xff09;。知识库可根据根据自己工作、学习或感兴趣的内容调…

50页PPT麦肯锡精益运营转型五步法

读者朋友大家好&#xff0c;最近有会员朋友咨询晓雯&#xff0c;需要《 50页PPT麦肯锡精益运营转型五步法》资料&#xff0c;欢迎大家下载学习。 知识星球已上传的资料链接&#xff1a; 企业架构 企业架构 (EA) 设计咨询项目-企业架构治理(EAM)现状诊断 105页PPTHW企业架构设…

unity将多层嵌套的结构体与json字符串相互转化

定义多个结构体&#xff0c;将结构体内容输入到最终的JObject中&#xff0c;然后将其转为字符串打印出来&#xff0c;即可。 代码内容如下&#xff1a; using Newtonsoft.Json; using Newtonsoft.Json.Linq; using UnityEngine;public class Test : MonoBehaviour {private Ap…

【开源大模型生态9】百度的文心大模型

这张图展示了百度千帆大模型平台的功能架构及其与BML-AI开发平台和百度百舸AI异构计算平台的关系。以下是各个模块的解释&#xff1a; 模型广场&#xff1a; 通用大模型&#xff1a;提供基础的自然语言处理能力。行业大模型&#xff1a;针对不同行业的定制化模型。大模型工具链…