AI助力遥感影像智能分析计算,基于高精度YOLOv5全系列参数【n/s/m/l/x】模型开发构建卫星遥感拍摄场景下地面建筑物智能化分割检测识别系统

随着科技的飞速发展,卫星遥感技术已成为获取地球表面信息的重要手段之一。卫星遥感图像以其覆盖范围广、数据量大、信息丰富等特点,在环境监测、城市规划、灾害评估等多个领域发挥着不可替代的作用。然而,面对海量的卫星图像数据,尤其是当需要对图像中的特定目标如地面建筑物进行精细分析时,传统的人工方法显得力不从心。幸运的是,人工智能(AI)技术的兴起,特别是深度学习领域的突破,为这一难题提供了有效的解决方案。本文将探讨智能化分割检测模型在遥感图像地面建筑物分析中的应用及其优势。
遥感图像通常具有极高的分辨率和庞大的数据量,这既是优势也是挑战。对于地面建筑物的识别与分析而言,主要难点包括:
1、数据量大:卫星每天产生的海量图像数据,人工处理效率低下且成本高昂。
2、目标多样性:地面建筑物形态各异,包括高楼、平房、桥梁、塔楼等,增加了识别的复杂度。
3、环境干扰:云层遮挡、阴影、植被覆盖等因素可能影响建筑物的准确识别。
为了克服上述挑战,智能化分割检测模型应运而生。这类模型通过深度学习算法,能够自动学习图像中的特征,实现对目标物体的精确分割与检测。具体步骤包括:
1、数据预处理:对原始的卫星遥感图像进行裁剪、归一化等处理,生成标准化的数据集。这一步是确保模型训练效果的关键。
2、智能标注辅助:利用如SAM(Segment Anything Model ,分割一切模型)等开源工具,自动或半自动地生成图像目标的初步掩模信息。这些掩模信息虽需人工修正,但大大提高了标注效率。
3、模型训练:基于处理好的数据集,选择合适的深度学习框架(如TensorFlow、PyTorch)和分割检测模型(如U-Net、Mask R-CNN)进行训练。通过不断优化模型参数,提升其对地面建筑物的识别精度。
4、结果评估与优化:利用验证集和测试集对模型性能进行评估,根据评估结果调整模型结构或参数,以达到最佳效果。
本文正是基于这个思考背景下,想要基于智能化的分割检测模型来应用实践开发构建遥感影像下的地面建筑物分割检测系统,首先看下实例效果:

接下来看下数据实例:

这里我直接使用的是官方v7.0分支的代码,项目地址在这里,如下所示:

如果不会使用可以参考我的教程:

《基于yolov5-v7.0开发实践实例分割模型超详细教程》

非常详细的操作实践教程,这里就不再赘述了。

这里我们一共开发了全系列五款不同参数量级的模型,实验阶段保持相同的参数设置,等待所有模型训练完成之后,我们来对其各个指标进行对比可视化。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】 

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

综合对比来看,n系列模型效果最差,s系列效果次之,其余三款模型达到了相近的结果。接下来为了依次对比不同系列的模型详细情况,我们分开每个指标下面每个模型进行可视化,如下:

【F1值】

【loss】

【mAP0.5】

【mAP0.5:0.95】

【Precision】

【Recall】

【Mask实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

传统的数据领域中引入AI智能化的模型,可以大大提质增效,智能化分析的优势
1、高效性:自动化处理流程极大地提高了数据处理速度,能够在短时间内完成大规模图像的分析任务。
2、准确性:深度学习模型通过大量数据的学习,能够捕捉到人类难以察觉的细微特征,从而提高识别的准确性。
3、可扩展性:模型训练完成后,可以轻松应用于其他类型的遥感图像分析任务,实现功能的快速扩展。
4、智能化决策支持:结合GIS(地理信息系统)等技术,智能化分割检测模型可以为城市规划、灾害评估等领域提供精准的数据支持,助力科学决策。
智能化分割检测模型在遥感图像地面建筑物分析中的应用,不仅解决了传统人工方法效率低下、成本高昂的问题,还通过深度学习技术的引入,实现了对复杂场景的精准识别与分析。随着技术的不断进步和应用的深入拓展,我们有理由相信,智能化分割检测模型将在更多领域发挥重要作用,推动遥感技术的进一步发展。本文仅从实验性质的角度出发做了基础的实践工作,作为抛砖引玉,希望未来会有更大的发展空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1536888.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

wx小程序渗透思路

免责声明:本文仅做分享! 目录 WX小程序源代码 wx小程序目录位置: 反编译: e0e1-wx.py工具 unveilr.exe工具 查看源代码: 微信开发者工具: WX抓包 Fiddler抓包 官网下载 下载证书 操作: bp proxifier bp:(代理抓包) proxifier:(本地代理) WX小程序源代码 其实就…

程序修改题(41-50)

第四十一题 题目 给定程序modi1.c的主函数中&#xff0c;将a、b、c三个结点链成一个单向链表&#xff0c;并给各结点的数据域赋值&#xff0c;函数fun()的作用是:累加链表结点数据域中的数据作为函数值返回。 #include <stdio.h> typedef struct list { int data…

【数据结构-扫描线】力扣57. 插入区间

给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表 intervals&#xff0c;其中 intervals[i] [starti, endi] 表示第 i 个区间的开始和结束&#xff0c;并且 intervals 按照 starti 升序排列。同样给定一个区间 newInterval [start, end] 表示另一个区间的开始和…

李宏毅结构化学习 02

文章目录 一、上篇博文复习二、Separable Case三、Non-separable Case四、Considering Errors五、Regularization六、Structured SVM七、Cutting Plane Algorithm for Structured SVM八、Multi-class and binary SVM九、Beyond Structured SVM 一、上篇博文复习 图中x表示输入的…

Android Framework(六)WMS-窗口显示流程——窗口内容绘制与显示

文章目录 窗口显示流程明确目标 窗户内容绘制与显示流程窗口Surface状态完整流程图 应用端处理finishDrawingWindow 的触发 system_service处理WindowState状态 -- COMMIT_DRAW_PENDING本次layout 流程简述 窗口显示流程 目前窗口的显示到了最后一步。 在 addWindow 流程中&…

基于Python的自然语言处理系列(10):使用双向LSTM进行文本分类

在前一篇文章中&#xff0c;我们介绍了如何使用RNN进行文本分类。在这篇文章中&#xff0c;我们将进一步优化模型&#xff0c;使用双向多层LSTM来替代RNN&#xff0c;从而提高模型在序列数据上的表现。LSTM通过引入一个额外的记忆单元&#xff08;cell state&#xff09;来解决…

24.Redis实现全局唯一ID

是一种分布式系统下用来生成全局唯一ID的工具。 特点 1.唯一性 2.高可用 3.高性能 4.递增性&#xff0c;数据也要保持一种递增&#xff0c;有利于数据库进行查询。 5.安全性 全局唯一ID的生成策略 1.UUID(没有顺序&#xff0c;字符串类型&#xff0c;效率不高) 2.Redis…

【电路笔记】-差分运算放大器

差分运算放大器 文章目录 差分运算放大器1、概述2、差分运算放大器表示2.1 差分模式2.2 减法器模式3、差分放大器示例3.1 相关电阻3.2 惠斯通桥3.3 光/温度检测4、仪表放大器5、总结1、概述 在之前的文章中,我们讨论了反相运算放大器和同相运算放大器,我们考虑了在运算放大器…

floodfill算法(二)

目录 一、太平洋大西洋水流问题 1. 题目链接&#xff1a;417. 太平洋大西洋水流问题 2. 题目描述&#xff1a; 3. 解法 &#x1f334;算法思路&#xff1a; &#x1f334;算法代码&#xff1a; 二、扫雷游戏 1. 题目链接&#xff1a;529. 扫雷游戏 2. 题目描述&#xf…

softmax回归的从零实现(附代码)

softmax回归是一个多分类模型&#xff0c;但是他跟线性回归一样将输入特征与权重做线性叠加&#xff0c;与线性不同的是他有多个输出&#xff0c;输出的个数对应分类标签的个数&#xff0c;比如四个特征和三种输出动物类别&#xff0c;则权重包含12个标量&#xff08;带下标的w…

深度学习之线性代数预备知识点

概念定义公式/案例标量(Scalar)一个单独的数值&#xff0c;表示单一的量。例如&#xff1a;5, 3.14, -2向量 (Vector)一维数组&#xff0c;表示具有方向和大小的量。 &#xff0c;表示三维空间中的向量 模(Magnitude)向量的长度&#xff0c;也称为范数&#xff08;通常为L2范数…

HCIA--实验十六:ACL通信实验(2)

2.高级ACL配置 一、实验内容 1.需求/要求&#xff1a; 使用三台PC和一台交换机&#xff0c;在交换机上配置高级ACL&#xff0c;测试PC1、PC2、PC3间的连通性。 二、实验过程 1.拓扑图&#xff1a; 2.步骤&#xff1a; 1.给PC3配置ip地址&#xff1a; 2.给交换机SW3配置高…

Hello,Spring Boot...

今天开启了Spring Boot学习之旅。 首先就是&#xff0c;JDK、Maven、IDEA以及各种官网的下载、安装与配置 然后通过组件创建小类&#xff0c;最让人头痛的就是&#xff0c;这个spring-boot-starter-thymeleaf&#xff0c;下错版本了 其他的一切顺利&#xff0c;自动化明显 最后…

2024最新版mysql数据库表的查询操作-总结

序言 1、MySQL表操作(创建表&#xff0c;查询表结构&#xff0c;更改表字段等)&#xff0c; 2、MySQL的数据类型(CHAR、VARCHAR、BLOB,等)&#xff0c; 本节比较重要&#xff0c;对数据表数据进行查询操作&#xff0c;其中可能大家不熟悉的就对于INNER JOIN(内连接)、LEFT JOIN…

Learn ComputeShader 15 Grass

1.Using Blender to create a single grass clump 首先blender与unity的坐标轴不同&#xff0c;z轴向上&#xff0c;不是y轴 通过小键盘的数字键可以快速切换视图&#xff0c;选中物体以后按下小键盘的点可以将物体聚焦于屏幕中心 首先我们创建一个平面&#xff0c;宽度为0.2…

SpringBoot中使用EasyExcel并行导出多个excel文件并压缩zip后下载

❃博主首页 &#xff1a; 「码到三十五」 &#xff0c;同名公众号 :「码到三十五」&#xff0c;wx号 : 「liwu0213」 ☠博主专栏 &#xff1a; <mysql高手> <elasticsearch高手> <源码解读> <java核心> <面试攻关> ♝博主的话 &#xff1a…

SysML图例-农业无人机

DDD领域驱动设计批评文集>> 《软件方法》强化自测题集>> 《软件方法》各章合集>>

dll修复工具4DDiG DLL Fixer,解决电脑dll丢失问题

4DDiG DLL Fixer是一款专业的DLL修复工具&#xff0c;旨在解决Windows系统中各种DLL相关问题。该工具能够快速全面地扫描计算机&#xff0c;检测并修复导致程序功能异常的DLL错误。它支持一键式操作&#xff0c;自动扫描、识别和替换缺失或损坏的DLL文件&#xff0c;从而帮助用…

推荐3款AIai论文大纲一键生成文献,精选整理!

在当前的学术写作环境中&#xff0c;AI论文大纲生成工具已经成为许多学者和学生的重要助手。这些工具不仅能够快速生成高质量的论文大纲&#xff0c;还能提供内容填充、文献引用和查重修改等全方位的服务。以下是三款值得推荐的AI论文大纲一键生成文献工具&#xff1a;千笔-AIP…

爬虫--翻页tips

免责声明&#xff1a;本文仅做分享&#xff01; 伪线程 from DrissionPage import ChromiumPage import timepage ChromiumPage() page.get("https://you.ctrip.com/sight/taian746.html") # 初始化 第0页 index_page 0# 翻页点击函数 sleep def page_turn():page…