C++提高编程-泛型编程


一、模板:

1.1.模板的概念:

  • 1.模板就是建立通用的模具,大大提高复用性
  • 2.例如生活中的模板:
    • 一寸照片模板:
      在这里插入图片描述
    • PPT模板:
      在这里插入图片描述
      在这里插入图片描述
  • 模板的特点:
    • 模板不可以直接使用,它只是一个框架
    • 模板的通用并不是万能的

二、泛型编程:

  • C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板
  • C++提供两种模板机制:函数模板类模板

三、函数模板

3.1.作用:

  • 建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

3.2.应用:

a.语法

template<typename T>
函数声明或定义

解释:

  • template — 声明创建模板
  • typename — 表面其后面的符号是一种数据类型,可以用class代替
  • T — 通用的数据类型,名称可以替换,通常为大写字母

b.案例:

//交换整型函数
void swapInt(int &a, int &b) {int temp = a;a = b;b = temp;
}//交换浮点型函数
void swapDouble(double &a, double &b) {double temp = a;a = b;b = temp;
}//利用模板提供通用的交换函数
template<typename T>
void mySwap(T &a, T &b)
{T temp = a;a = b;b = temp;
}void test01()
{int a = 10;int b = 20;//swapInt(a, b);//利用模板实现交换//1、自动类型推导mySwap(a, b);//2、显示指定类型mySwap<int>(a, b);cout << "a = " << a << endl;cout << "b = " << b << endl;}int main() {test01();system("pause");return 0;
}

3.4.总结:

  • 函数模板利用关键字 template
  • 使用函数模板有两种方式:自动类型推导显示指定类型
  • 模板的目的是为了提高复用性,将类型参数化

3.5.说明:

a.注意:

  • 1.自动类型推导,必须推导出一致的数据类型T,才可以使用
  • 2.模板必须要确定出T的数据类型,才可以使用
  • 3.在函数模板中template<typename T>的代码可以替换成template<class T>

b.示例:

//利用模板提供通用的交换函数
template<class T>
void mySwap(T &a, T &b)
{T temp = a;a = b;b = temp;
}// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{int a = 10;int b = 20;char c = 'c';mySwap(a, b); // 正确,可以推导出一致的T//mySwap(a, c); // 错误,推导不出一致的T类型
}// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{cout << "func 调用" << endl;
}void test02()
{//func(); //错误,模板不能独立使用,必须确定出T的类型func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}int main() {test01();test02();system("pause");return 0;
}

总结: 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型

3.6.案例

a.需求:

  • 1.利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
  • 2.排序规则从大到小,排序算法为选择排序
  • 3.分别利用char数组int数组进行测试

b.示例:

//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{T temp = a;a = b;b = temp;
}template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len){for (int i = 0; i < len; i++){int max = i; //最大数的下标for (int j = i + 1; j < len; j++){if (arr[max] < arr[j]){max = j;//更新最大值下标}}if (max != i){ //如果最大数的下标不是i,交换两者mySwap(arr[max], arr[i]);}}
}template<typename T>
void printArray(T arr[], int len) {for (int i = 0; i < len; i++) {cout << arr[i] << " ";}cout << endl;
}void test01()
{//测试char数组char charArr[] = "bdcfeagh";int num = sizeof(charArr) / sizeof(char); //计算的是数组长度mySort(charArr, num);printArray(charArr, num);
}void test02()
{//测试int数组int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };int num = sizeof(intArr) / sizeof(int); //计算的是数组长度mySort(intArr, num);printArray(intArr, num);
}int main() {test01();test02();system("pause");return 0;
}

总结:模板可以提高代码复用,需要熟练掌握

3.6.普通函数与函数模板对比:

a.区别

  • 1.普通函数调用时可以发生自动类型转换(隐式类型转换)
  • 2.函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
  • 3.在函数模板中,如果利用显示指定类型的方式,可以发生隐式类型转换

b.示例:

//普通函数
int myAdd01(int a, int b)
{return a + b;
}//函数模板
template<class T>
T myAdd02(T a, T b)  
{return a + b;
}//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{int a = 10;int b = 20;char c = 'c';cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型  'c' 对应 ASCII码 99//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}int main() {test01();system("pause");return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

3.7.普通函数与函数模板的调用规则:

a.调用规则:

  • 1.如果函数模板和普通函数都可以实现,优先调用普通函数
  • 2.可以通过空模板参数列表来强制调用函数模板
  • 3.函数模板也可以发生重载
  • 4.如果函数模板可以产生更好的匹配,优先调用函数模板

b.示例:

//普通函数与函数模板调用规则
void myPrint(int a, int b)
{cout << "调用的普通函数" << endl;
}template<typename T>
void myPrint(T a, T b) 
{ cout << "调用的模板" << endl;
}template<typename T>
void myPrint(T a, T b, T c) 
{ cout << "调用重载的模板" << endl; 
}void test01()
{//1、如果函数模板和普通函数都可以实现,优先调用普通函数// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到int a = 10;int b = 20;myPrint(a, b); //调用普通函数//2、可以通过空模板参数列表来强制调用函数模板myPrint<>(a, b); //调用函数模板//3、函数模板也可以发生重载int c = 30;myPrint(a, b, c); //调用重载的函数模板//4、 如果函数模板可以产生更好的匹配,优先调用函数模板char c1 = 'a';char c2 = 'b';myPrint(c1, c2); //调用函数模板
}int main() {test01();system("pause");return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

3.8.模板的局限性

a.局限性:

  • 1.模板的通用性并不是万能的,如下两个局限:
	template<class T>void f(T a, T b){ a = b;}

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

	template<class T>void f(T a, T b){ if(a > b) { ... }}

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

b.示例:

#include<iostream>
using namespace std;
#include <string>class Person{
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}string m_Name;int m_Age;
};//普通函数模板
template<class T>
bool myCompare(T &a, T &b){if (a == b){return true;}else{return false;}
}//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2){if ( p1.m_Name  == p2.m_Name && p1.m_Age == p2.m_Age){return true;}else{return false;}
}void test01(){int a = 10;int b = 20;//内置数据类型可以直接使用通用的函数模板bool ret = myCompare(a, b);if (ret){cout << "a == b " << endl;}else{cout << "a != b " << endl;}
}void test02(){Person p1("Tom", 10);Person p2("Tom", 10);//自定义数据类型,不会调用普通的函数模板//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型bool ret = myCompare(p1, p2);if (ret){cout << "p1 == p2 " << endl;}else{cout << "p1 != p2 " << endl;}
}int main() {test01();test02();system("pause");return 0;
}

总结:

  • 利用具体化的模板,可以解决自定义类型的通用化
  • 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板

四、类模板

4.1.作用:

  • 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。

4.2.语法

a.语法:

template<typename T>

解释:**

  • template — 声明创建模板
  • typename — 表面其后面的符号是一种数据类型,可以用class代替
  • T — 通用的数据类型,名称可以替换,通常为大写字母

b.示例:

#include <string>
//类模板
template<class NameType, class AgeType> 
class Person{public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}public:NameType mName;AgeType mAge;
};void test01(){// 指定NameType 为string类型,AgeType 为 int类型Person<string, int>P1("孙悟空", 999);P1.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板

4.3.类模板与函数模板区别

a.区别:

  • 1.类模板没有自动类型推导的使用方式
  • 2.类模板在模板参数列表中可以有默认参数

b.示例:

#include <string>
//类模板
template<class NameType, class AgeType> 
class PersonA{public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}public:NameType mName;AgeType mAge;
};//类模板
template<class NameType, class AgeType = int> 
class PersonB{public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}public:NameType mName;AgeType mAge;
};//1、类模板没有自动类型推导的使用方式
void test01(){// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导PersonA <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板p.showPerson();
}//2、类模板在模板参数列表中可以有默认参数
void test02(){PersonB <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数p.showPerson();
}int main() {test01();test02();system("pause");return 0;
}

4.4.类模板中成员函数创建时机

a.创建时机区别:

  • 1.类模板中成员函数和普通类中成员函数创建时机是有区别的
    • 普通类中的成员函数一开始就可以创建
    • 类模板中的成员函数在调用时才创建

b.示例:

class Person1{public:void showPerson1(){cout << "Person1 show" << endl;}
};class Person2{public:void showPerson2(){cout << "Person2 show" << endl;}
};template<class T>
class MyClass{public:T obj;//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成void fun1() { obj.showPerson1(); }void fun2() { obj.showPerson2(); }
};void test01(){MyClass<Person1> m;m.fun1();//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}int main() {test01();system("pause");return 0;
}

总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建

4.5.类模板对象做函数参数

学习目标:类模板实例化出的对象,向函数传参的方式

a.传入方式:

  • 1.指定传入的类型 — 直接显示对象的数据类型
  • 2.参数模板化 — 将对象中的参数变为模板进行传递
  • 3.整个类模板化 — 将这个对象类型 模板化进行传递

b.示例:

#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person{public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}public:NameType mName;AgeType mAge;};//方式1、指定传入的类型
void printPerson1(Person<string, int> &p) {p.showPerson();
}
void test01(){Person <string, int >p("孙悟空", 100);printPerson1(p);
}//方式2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p){p.showPerson();cout << "T1的类型为: " << typeid(T1).name() << endl;cout << "T2的类型为: " << typeid(T2).name() << endl;
}void test02(){Person <string, int >p("猪八戒", 90);printPerson2(p);
}//方式3、整个类模板化
template<class T>
void printPerson3(T &p){cout << "T的类型为: " << typeid(T).name() << endl;p.showPerson();}
void test03()
{Person <string, int >p("唐僧", 30);printPerson3(p);
}int main() {test01();test02();test03();system("pause");return 0;
}

总结:

  • 通过类模板创建的对象,可以有三种方式向函数中进行传参
  • 使用比较广泛是第一种:指定传入的类型

4.6.类模板与继承:

a.注意点:

  • 1.当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
  • 2.如果不指定,编译器无法给子类分配内存
  • 3.如果想灵活指定出父类中T的类型,子类也需变为类模板

b.示例:

template<class T>
class Base{T m;
};//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承//必须指定一个类型
class Son :public Base<int>{ };void test01(){Son c;
}//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>{public:Son2(){cout << typeid(T1).name() << endl;cout << typeid(T2).name() << endl;}
};void test02()
{Son2<int, char> child1;
}int main() {test01();test02();system("pause");return 0;
}

总结:如果父类是类模板,子类需要指定出父类中T的数据类型

4.8.类模板成员函数类外实现

学习目标:能够掌握类模板中的成员函数类外实现

a.示例:

#include <string>//类模板中成员函数类外实现
template<class T1, class T2>
class Person {public://成员函数类内声明Person(T1 name, T2 age);void showPerson();public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}void test01()
{Person<string, int> p("Tom", 20);p.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:类模板中成员函数类外实现时,需要加上模板参数列表

4.9. 类模板分文件编写

学习目标:掌握类模板成员函数分文件编写产生的问题以及解决方式

a.问题:

  • 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到

b.解决:

  • 解决方式1:直接包含.cpp源文件
  • 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制

c.示例:

person.hpp中代码:

#pragma once
#include <iostream>
using namespace std;
#include <string>template<class T1, class T2>
class Person {
public:Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
  • 2.类模板分文件编写.cpp中代码
#include<iostream>
using namespace std;//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"
void test01()
{Person<string, int> p("Tom", 10);p.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp

4.10.类模板与友元

学习目标:

  • 掌握类模板配合友元函数的类内和类外实现
  • 全局函数类内实现 - 直接在类内声明友元即可
  • 全局函数类外实现 - 需要提前让编译器知道全局函数的存在

a.示例:

#include <string>//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p); template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}template<class T1, class T2>
class Person
{//1、全局函数配合友元   类内实现friend void printPerson(Person<T1, T2> & p){cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;}//全局函数配合友元  类外实现friend void printPerson2<>(Person<T1, T2> & p);public:Person(T1 name, T2 age){this->m_Name = name;this->m_Age = age;}private:T1 m_Name;T2 m_Age;};//1、全局函数在类内实现
void test01()
{Person <string, int >p("Tom", 20);printPerson(p);
}//2、全局函数在类外实现
void test02()
{Person <string, int >p("Jerry", 30);printPerson2(p);
}int main() {//test01();test02();system("pause");return 0;
}

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别

4.11.类模板案例

a.案例描述:

  • 1.实现一个通用的数组类,要求如下:
  • 可以对内置数据类型以及自定义数据类型的数据进行存储
  • 将数组中的数据存储到堆区
  • 构造函数中可以传入数组的容量
  • 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
  • 提供尾插法和尾删法对数组中的数据进行增加和删除
  • 可以通过下标的方式访问数组中的元素
  • 可以获取数组中当前元素个数和数组的容量

b.示例:

  • myArray.hpp中代码
#pragma once
#include <iostream>
using namespace std;template<class T>
class MyArray
{
public://构造函数MyArray(int capacity){this->m_Capacity = capacity;this->m_Size = 0;pAddress = new T[this->m_Capacity];}//拷贝构造MyArray(const MyArray & arr){this->m_Capacity = arr.m_Capacity;this->m_Size = arr.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++){//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,// 普通类型可以直接= 但是指针类型需要深拷贝this->pAddress[i] = arr.pAddress[i];}}//重载= 操作符  防止浅拷贝问题MyArray& operator=(const MyArray& myarray) {if (this->pAddress != NULL) {delete[] this->pAddress;this->m_Capacity = 0;this->m_Size = 0;}this->m_Capacity = myarray.m_Capacity;this->m_Size = myarray.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++) {this->pAddress[i] = myarray[i];}return *this;}//重载[] 操作符  arr[0]T& operator [](int index){return this->pAddress[index]; //不考虑越界,用户自己去处理}//尾插法void Push_back(const T & val){if (this->m_Capacity == this->m_Size){return;}this->pAddress[this->m_Size] = val;this->m_Size++;}//尾删法void Pop_back(){if (this->m_Size == 0){return;}this->m_Size--;}//获取数组容量int getCapacity(){return this->m_Capacity;}//获取数组大小int	getSize(){return this->m_Size;}//析构~MyArray(){if (this->pAddress != NULL){delete[] this->pAddress;this->pAddress = NULL;this->m_Capacity = 0;this->m_Size = 0;}}private:T * pAddress;  //指向一个堆空间,这个空间存储真正的数据int m_Capacity; //容量int m_Size;   // 大小
};
  • 2.类模板案例—数组类封装.cpp中
#include "myArray.hpp"
#include <string>void printIntArray(MyArray<int>& arr) {for (int i = 0; i < arr.getSize(); i++) {cout << arr[i] << " ";}cout << endl;
}//测试内置数据类型
void test01()
{MyArray<int> array1(10);for (int i = 0; i < 10; i++){array1.Push_back(i);}cout << "array1打印输出:" << endl;printIntArray(array1);cout << "array1的大小:" << array1.getSize() << endl;cout << "array1的容量:" << array1.getCapacity() << endl;cout << "--------------------------" << endl;MyArray<int> array2(array1);array2.Pop_back();cout << "array2打印输出:" << endl;printIntArray(array2);cout << "array2的大小:" << array2.getSize() << endl;cout << "array2的容量:" << array2.getCapacity() << endl;
}//测试自定义数据类型
class Person {
public:Person() {} Person(string name, int age) {this->m_Name = name;this->m_Age = age;}
public:string m_Name;int m_Age;
};void printPersonArray(MyArray<Person>& personArr)
{for (int i = 0; i < personArr.getSize(); i++) {cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;}}void test02()
{//创建数组MyArray<Person> pArray(10);Person p1("孙悟空", 30);Person p2("韩信", 20);Person p3("妲己", 18);Person p4("王昭君", 15);Person p5("赵云", 24);//插入数据pArray.Push_back(p1);pArray.Push_back(p2);pArray.Push_back(p3);pArray.Push_back(p4);pArray.Push_back(p5);printPersonArray(pArray);cout << "pArray的大小:" << pArray.getSize() << endl;cout << "pArray的容量:" << pArray.getCapacity() << endl;}int main() {//test01();test02();system("pause");return 0;
}

总结:

能够利用所学知识点实现通用的数组

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/15121.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【Chapter 3】Machine Learning Classification Case_Prediction of diabetes-XGBoost

文章目录 1、XGBoost Algorithm2、Comparison of algorithm implementation between Python code and Sentosa_DSML community edition(1) Data reading and statistical analysis(2)Data preprocessing(3)Model Training and Evaluation(4)Model visualization 3、summarize 1…

Java学习——Day12

多态指的是同一个方法不同对象调用会有不同的行为&#xff0c;多态是方法的多态&#xff0c;属性没有多态&#xff0c;多态要有继承和重写。 这就是多态&#xff0c;其实原理也很简单&#xff0c;就是利用继承方法的重写实现的 对象的转型 向上转型&#xff1a;子类转成父类&…

AI生成字幕模型whisper介绍与使用

文章目录 前言一、whisper介绍二、预训练模型下载与环境配置三、推理 前言 随着人工智能技术的飞速发展&#xff0c;AI生成字幕模型已成为视频内容创作和传播领域的重要工具。其中&#xff0c;OpenAI推出的Whisper模型以其卓越的性能和广泛的应用场景&#xff0c;受到了广大用…

计算机毕业设计 | SpringBoot社区物业管理系统 小区管理(附源码)

1&#xff0c; 概述 1.1 课题背景 近几年来&#xff0c;随着物业相关的各种信息越来越多&#xff0c;比如报修维修、缴费、车位、访客等信息&#xff0c;对物业管理方面的需求越来越高&#xff0c;我们在工作中越来越多方面需要利用网页端管理系统来进行管理&#xff0c;我们…

4G与lora DTU农业监测应用数字化管理升级

农业监测的数字化管理升级&#xff0c;通过采用4G和LoRa等无线技术&#xff0c;解决渔业养殖、畜牧管理、农业灌溉以及远程监测等领域的互联互通。 渔业养殖水质监测 在渔业养殖中4G DTU通过采集各种水质传感器进行水质监测&#xff0c;4G DTU能够实时监测养殖水体的温度、pH值…

GA/T1400视图库平台EasyCVR视频融合平台HLS视频协议是什么?

在数字化时代&#xff0c;视频监控系统已成为保障安全、提升效率的关键技术。EasyCVR视频融合云平台&#xff0c;作为TSINGSEE青犀视频在“云边端”架构体系中的重要一环&#xff0c;专为大中型项目设计&#xff0c;提供了一个跨区域、网络化的视频监控综合管理系统平台。它不仅…

maven工程修改jdk编译版本的几种方法

一.背景 maven工程修改jdk编译版本的几种方法&#xff0c;以前这些小细节处理了就处理了&#xff0c;没有去记录&#xff0c;现在带徒弟&#xff0c;就写下吧&#xff01;可能不全面&#xff0c;不喜勿喷。哦&#xff0c;说下&#xff0c;本文的例子是在eclipse中开发截图的。 …

详细介绍Transformer!

&#x1f917;Transformer是一种神经网络架构&#xff0c;核心思想是利用自注意力机制来捕捉序列中元素之间的关系。从而避免了传统RNN难以处理长序列依赖的问题。 Transformer的主要组件和流程 &#x1f4ab;Encoder-Decoder结构 Transformer包含编码器和解码器两个主要部分…

中国车牌分类

从颜色和单双层分类(不考虑临时车牌) 黄单黄双黄绿单蓝单蓝双绿单绿双黑单黑双白单白双 #特殊文字 挂使港澳学警领临

【4060显卡也能跑高质量的Flux模型了吗】MIT Han 实验室开源了一个Flux的量化项目——SVDQuant

麻省理工学院&#xff08;MIT&#xff09;Han 实验室一直在积极开展一系列项目&#xff0c;包括微小机器学习&#xff08;Tiny Machine Learning&#xff09;、SANA、SVDQuant 和 QServe&#xff0c;这些项目旨在提高人工智能计算的效率&#xff0c;并实现在边缘设备上的高效部…

基于Java Springboot学生管理系统

一、作品包含 源码数据库全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA 数据库&#xff1a;MySQL5.7 数据库管理…

DELL Precision 系列默认用的都是非ECC内存

文章目录 DELL Precision 系列默认用的都是非ECC内存概述SSD升级SSD1SSD2 笔记DELL Precision 系列默认用的都是非ECC内存可以选非ECC的内存 备注备注如果不差钱备注END DELL Precision 系列默认用的都是非ECC内存 概述 去了一次DELL维修中心&#xff0c;清了一次灰。人工真贵…

Linux基础(2)以及资源耗尽病毒的编写(详见B站泷羽sec)

免责声明&#xff1a;本教程作者及相关参与人员对于任何直接或间接使用本教程内容而导致的任何形式的损失或损害&#xff0c;包括但不限于数据丢失、系统损坏、个人隐私泄露或经济损失等&#xff0c;不承担任何责任。所有使用本教程内容的个人或组织应自行承担全部风险。 Linux…

20241114软考架构-------软考案例15答案

每日打卡题案例15答案 15.【2016年真题】 难度&#xff1a;一般 阅读以下关于应用服务器的叙述&#xff0c;在答题纸上回答问题1至问题3。&#xff08;25分&#xff09; 【说明】 某电子产品制造公司&#xff0c;几年前开发建设了企业网站系统&#xff0c;实现了企业宣传、产品…

【LeetCode】每日一题 2024_11_14 统计好节点的数目(图/树的 DFS)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;统计好节点的数目 代码与解题思路 先读题&#xff1a;题目要求我们找出好节点的数量&#xff0c;什么是好节点&#xff1f;“好节点的所有子节点的数量都是相同的”&#xff0c;拿示例一…

HarmonyOs DevEco Studio小技巧29--ArkTS文字如何渐变

这是需求 昨天想了老多方法 一开始以为加上线性渐变这个属性就好了 Entry Component struct TextTest {State message: string 中华人民共和国万岁;build() {RelativeContainer() {Text(this.message).id(TextTestHelloWorld).fontSize(33).fontWeight(FontWeight.Bold).alig…

块设备 - 想进阶的必经之路!

在Linux内核开发的世界中&#xff0c;块设备&#xff08;Block Device&#xff09;是一块不可忽视的领域。它承载了文件系统的运行&#xff0c;管理着磁盘存储的核心逻辑&#xff0c;是初学者迈向内核进阶的重要知识点。本篇文章将用通俗易懂的语言&#xff0c;为你揭开块设备的…

高鑫零售实现扭亏为盈,逆市增长的高鑫零售未来何在?

大润发母公司高鑫零售发布截至9月30日的2025财年中期业绩报告&#xff1a;营收347.08亿元人民币&#xff0c;税后溢利1.86亿元&#xff0c;同比增加5.64亿元&#xff0c;实现扭亏为盈&#xff0c;高鑫零售的成绩单我们该如何分析&#xff1f; 首先&#xff0c;整体来看&#x…

AI绘画如何赚钱?分享5个简单,易上手的实用性案例

近年来&#xff0c;人工智能&#xff08;AI&#xff09;技术在各个领域都取得了巨大的突破&#xff0c;其中之一就是AI绘画。通过分享一些令人兴奋的应用与变现案例&#xff0c;我们可以深入了解AI绘画的实际应用&#xff0c;以及它如何改变了传统艺术创作和商业模式。 在接下…

如何在 Ubuntu 上安装 RStudio IDE(R语言集成开发环境) ?

RStudio 是一个功能强大的 R 语言集成开发环境(IDE)&#xff0c;R 是一种主要用于统计计算和数据分析的编程语言。任何从事数据科学项目或任何其他涉及 R 的类似任务的人&#xff0c;RStudio 都可以使您的工作更轻松。 本指南将引导您完成在 Ubuntu 系统上安装 RStudio 的过程…