Linux新的IO模型io_uring

一、Linux下的网络通信模型

在网络开发的过程中,需要处理好几个问题。首先是通信的内核支持问题;其次是通信的模型问题;最后是框架问题。这些问题在闭源的OS如Windows上,基本上不算什么大问题(因为只能用人家的API)。但在开源的OS上,典型的就是Linux上就是一个重要的问题。
在开源的系统上,如果内核原生支持一种IO通信,那么,效率一般来说会比不支持要高很多。网络通信有一个问题,它有点和算法在本质上有些相通,即选用哪种模型会导致它的通信效率差距非常大。举一个不恰当的例子,用一个只有两个槽的插座和十个槽的插座,能同时支持的用电接口个数完全不同。而在前面两个相同,而应用上,由于不同人对整个应用的理解和设计架构不同,导致其对应用支持的效率又有不同。同时,可能一种网络通信模型无法满足一些应用场景,所以框架一般会封装多种网络通信模型,这也是网络通信框架存在的意义。
但是有的时候,模型和框架往往混在一起,所以同一种技术在网络和书籍上的叫法均有不同,大家自己明白怎么回事儿即可,不要在这些细节上纠结。
看过Redis源的都清楚,在Redis中,对类linux的网络通信模型支持的有select,poll,epoll,kqueue。当然,可能不同的版本有所不同,这些细节就不再讨论。
一般来说,网络通信属于IO通信,而在IO通信中常见的几种通信模型有:
1、阻塞IO(Blocking IO)
2、非阻塞IO(NonBlocking IO)
3、IO多路复用(IO Multiplexing)
4、信号驱动(Signal Driven IO)
5、异步IO(Asynchonous IO)
这几种模型在《Unix网络编程》中都有总结。需要说明的是,这是从模型角度来抽象出来的,所以在其实现的过程中,是结合了内核支持和模型特点及应用支持几方面的来说明的。以前一般认为,在Linux中,对异步支持不如Windows好。
但开源技术有一个好处,缺啥补啥。所以在2019年的Linux内核5.1版本中,出现了一种新的IO框架,也就是io_uring。它是由block IO维护者Jens Axboe开发的一个用来支持异步IO通信的框架。

二、IO框架uring

io_uring为什么叫IO框架?因为其一开始主要是给存储搞的。网上的测评那是和SPDK可以一较高低,如果真那样,io_uring可比SPDK要强大,因为intel毕竟是一家国际大公司再加从底层直接支持。
但是,网络也属于IO啊,所以后来也就支持了网络IO。刚刚提到了,在Linux原生支持的IO通信中,大多数都是同步的,即使有一些框架实现了异步非阻塞仍然做的不是很好(AIO),在不少的情况下,仍然会出现非异步的情况。但是io_uring的出现,可以说是一种革命性的突破,它和eBPF是内核的两个重大的技术里程碑。
一个优秀的异步IO框架,一般具有以下几个特点:
1、异步非阻塞
异步和非阻塞往往是和IO通信分不开的,而异步和非阻塞又往往出现在一起。在IO通信中,非阻塞是实现异步的一个前提。而异步非阻塞往往是一种IO通信框架是否高效的基础。
2、减少或删除中间环节
容易理解的是,同步阻塞通信因为等待的原因,对中间环节通信(事件通知、数据拷贝次数、系统调用次数等)敏感性不强。但是异步非阻塞往往意味着海量的IO操作,所以中间环节增加任何一个步骤,付出的代价往往是难以忍受的。这也是AIO被诟病的地方。
3、扩展性要强
一个IO框架,不能只适应一种IO情况。比如磁盘、网络等都可以支持。
4、应用方便快捷
这是一个好的框架必备的特点。再优秀的东西,一旦变得复杂,就会慢慢失去它的优秀性。复杂就意味着高成本和后期维护的困难。
从Linux的异步框架发展来看,在io_uring之前出现过一些异步框架,但是对上述问题的解决都不是太好,所以一直无法融入内核之中,直到io_ring的出现。
而io_uring基本实现了上述几个特点。
首先,io_uring通过使用共享内存技术,大幅减少了内核层和应用层数据的交互拷贝,也减少了内核层和用户层的调用次数。其次数据隔离、交互减少就意味着内核和用户层可以自行其事,安排自己的线程工作状态时不用等待对方状态结果,这也是异步通信的一个重要前提。为了进一步实现异步,io_uring还实现了一个无锁环形队列,通过操作其实现用户态和内核态的IO非阻塞交互。

通过上述的说明基本可以了解io_uring的工程机制,做为一种框架,需要说明一下io_uring操作的流程:
1、应用程序提交IO操作请求到提交队列
2、SQ内核线程读取IO操作
3、SQ内核线程发起IO请求
4、SQ内核线程将结果写回完成队列
5、应用程序在完成队列读到IO结果

io_uring通过共享内存来减少交互,在io_uring中,主要有四种队列,即:
1、提交队列(Submission Queue, SQ):一整块连续的内存空间存储的环形队列,存放将执行 I/O 操作的数据(指向SQE数组的索引)
2、完成队列(Completion Queue, CQ):一整块连续的内存空间存储的环形队列,存放 I/O 操作完成后的结果
3、提交队列项数组(Submission Queue Entry,SQE) :提交队列中的每项是SQ中的数据项
4、CQE - Completion Queue Entry:完成队列项,这是储存在CQ中的数据项

io_uring 在创建时有两个选项,对应着 io_uring 处理任务的不同方式:
1、IORING_SETUP_IOPOLL,io_uring 会使用轮询的方式执行所有的操作
2、IORING_SETUP_SQPOLL,io_uring 会创建一个内核线程专门用来处理用户提交的任务
这两个选项的设置会对之后的交互产生如下影响:
1、都不设置,即以io_uring_enter 提交任务,内核线程任务无需 syscall
2、设置IORING_SETUP_IOPOLL,以io_uring_enter 提交任务和处理任务。
3、设置IORING_SETUP_SQPOLL,直接提交处理任务(不需要syscall)。内核线程自动控制处理并在一定条件下休眠,然后可使用io_uring_enter唤醒。

当用户设置了 IORING_SETUP_SQPOLL选项(SQPOLL模式)创建 io_uring 时,内核将会创建一个名为 io_uring-sq 的内核线程(即SQ线程),SQ线程从提交队列读取IO操作,并且发起IO请求。
当IO请求完成以后,SQ线程将会把IO操作的结果写回到完成队列,这样,应用程序就可以从中得到IO操作的结果。

三、应用例程

直接使用io_uring有些复杂,开发者在io_uring的基础上又封装了一个库即liburing,这样普通开发者可以直接使用它。看一下其UDP通信的例程:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/udp.h>
#include <arpa/inet.h>#include "liburing.h"#define QD 64
#define BUF_SHIFT 12 /* 4k */
#define CQES (QD * 16)
#define BUFFERS CQES
#define CONTROLLEN 0struct sendmsg_ctx {struct msghdr msg;struct iovec iov;
};struct ctx {struct io_uring ring;struct io_uring_buf_ring *buf_ring;unsigned char *buffer_base;struct msghdr msg;int buf_shift;int af;bool verbose;struct sendmsg_ctx send[BUFFERS];size_t buf_ring_size;
};static size_t buffer_size(struct ctx *ctx)
{return 1U << ctx->buf_shift;
}static unsigned char *get_buffer(struct ctx *ctx, int idx)
{return ctx->buffer_base + (idx << ctx->buf_shift);
}static int setup_buffer_pool(struct ctx *ctx)
{int ret, i;void *mapped;struct io_uring_buf_reg reg = { .ring_addr = 0,.ring_entries = BUFFERS,.bgid = 0 };ctx->buf_ring_size = (sizeof(struct io_uring_buf) + buffer_size(ctx)) * BUFFERS;mapped = mmap(NULL, ctx->buf_ring_size, PROT_READ | PROT_WRITE,MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);if (mapped == MAP_FAILED) {fprintf(stderr, "buf_ring mmap: %s\n", strerror(errno));return -1;}ctx->buf_ring = (struct io_uring_buf_ring *)mapped;io_uring_buf_ring_init(ctx->buf_ring);reg = (struct io_uring_buf_reg) {.ring_addr = (unsigned long)ctx->buf_ring,.ring_entries = BUFFERS,.bgid = 0};ctx->buffer_base = (unsigned char *)ctx->buf_ring +sizeof(struct io_uring_buf) * BUFFERS;ret = io_uring_register_buf_ring(&ctx->ring, &reg, 0);if (ret) {fprintf(stderr, "buf_ring init failed: %s\n""NB This requires a kernel version >= 6.0\n",strerror(-ret));return ret;}for (i = 0; i < BUFFERS; i++) {io_uring_buf_ring_add(ctx->buf_ring, get_buffer(ctx, i), buffer_size(ctx), i,io_uring_buf_ring_mask(BUFFERS), i);}io_uring_buf_ring_advance(ctx->buf_ring, BUFFERS);return 0;
}static int setup_context(struct ctx *ctx)
{struct io_uring_params params;int ret;memset(&params, 0, sizeof(params));params.cq_entries = QD * 8;params.flags = IORING_SETUP_SUBMIT_ALL | IORING_SETUP_COOP_TASKRUN |IORING_SETUP_CQSIZE;ret = io_uring_queue_init_params(QD, &ctx->ring, &params);if (ret < 0) {fprintf(stderr, "queue_init failed: %s\n""NB: This requires a kernel version >= 6.0\n",strerror(-ret));return ret;}ret = setup_buffer_pool(ctx);if (ret)io_uring_queue_exit(&ctx->ring);memset(&ctx->msg, 0, sizeof(ctx->msg));ctx->msg.msg_namelen = sizeof(struct sockaddr_storage);ctx->msg.msg_controllen = CONTROLLEN;return ret;
}static int setup_sock(int af, int port)
{int ret;int fd;uint16_t nport = port <= 0 ? 0 : htons(port);fd = socket(af, SOCK_DGRAM, 0);if (fd < 0) {fprintf(stderr, "sock_init: %s\n", strerror(errno));return -1;}if (af == AF_INET6) {struct sockaddr_in6 addr6 = {.sin6_family = af,.sin6_port = nport,.sin6_addr = IN6ADDR_ANY_INIT};ret = bind(fd, (struct sockaddr *) &addr6, sizeof(addr6));} else {struct sockaddr_in addr = {.sin_family = af,.sin_port = nport,.sin_addr = { INADDR_ANY }};ret = bind(fd, (struct sockaddr *) &addr, sizeof(addr));}if (ret) {fprintf(stderr, "sock_bind: %s\n", strerror(errno));close(fd);return -1;}if (port <= 0) {int port;struct sockaddr_storage s;socklen_t sz = sizeof(s);if (getsockname(fd, (struct sockaddr *)&s, &sz)) {fprintf(stderr, "getsockname failed\n");close(fd);return -1;}port = ntohs(((struct sockaddr_in *)&s)->sin_port);fprintf(stderr, "port bound to %d\n", port);}return fd;
}static void cleanup_context(struct ctx *ctx)
{munmap(ctx->buf_ring, ctx->buf_ring_size);io_uring_queue_exit(&ctx->ring);
}static bool get_sqe(struct ctx *ctx, struct io_uring_sqe **sqe)
{*sqe = io_uring_get_sqe(&ctx->ring);if (!*sqe) {io_uring_submit(&ctx->ring);*sqe = io_uring_get_sqe(&ctx->ring);}if (!*sqe) {fprintf(stderr, "cannot get sqe\n");return true;}return false;
}static int add_recv(struct ctx *ctx, int idx)
{struct io_uring_sqe *sqe;if (get_sqe(ctx, &sqe))return -1;io_uring_prep_recvmsg_multishot(sqe, idx, &ctx->msg, MSG_TRUNC);sqe->flags |= IOSQE_FIXED_FILE;sqe->flags |= IOSQE_BUFFER_SELECT;sqe->buf_group = 0;io_uring_sqe_set_data64(sqe, BUFFERS + 1);return 0;
}static void recycle_buffer(struct ctx *ctx, int idx)
{io_uring_buf_ring_add(ctx->buf_ring, get_buffer(ctx, idx), buffer_size(ctx), idx,io_uring_buf_ring_mask(BUFFERS), 0);io_uring_buf_ring_advance(ctx->buf_ring, 1);
}static int process_cqe_send(struct ctx *ctx, struct io_uring_cqe *cqe)
{int idx = cqe->user_data;if (cqe->res < 0)fprintf(stderr, "bad send %s\n", strerror(-cqe->res));recycle_buffer(ctx, idx);return 0;
}static int process_cqe_recv(struct ctx *ctx, struct io_uring_cqe *cqe,int fdidx)
{int ret, idx;struct io_uring_recvmsg_out *o;struct io_uring_sqe *sqe;if (!(cqe->flags & IORING_CQE_F_MORE)) {ret = add_recv(ctx, fdidx);if (ret)return ret;}if (cqe->res == -ENOBUFS)return 0;if (!(cqe->flags & IORING_CQE_F_BUFFER) || cqe->res < 0) {fprintf(stderr, "recv cqe bad res %d\n", cqe->res);if (cqe->res == -EFAULT || cqe->res == -EINVAL)fprintf(stderr,"NB: This requires a kernel version >= 6.0\n");return -1;}idx = cqe->flags >> 16;o = io_uring_recvmsg_validate(get_buffer(ctx, cqe->flags >> 16),cqe->res, &ctx->msg);if (!o) {fprintf(stderr, "bad recvmsg\n");return -1;}if (o->namelen > ctx->msg.msg_namelen) {fprintf(stderr, "truncated name\n");recycle_buffer(ctx, idx);return 0;}if (o->flags & MSG_TRUNC) {unsigned int r;r = io_uring_recvmsg_payload_length(o, cqe->res, &ctx->msg);fprintf(stderr, "truncated msg need %u received %u\n",o->payloadlen, r);recycle_buffer(ctx, idx);return 0;}if (ctx->verbose) {struct sockaddr_in *addr = io_uring_recvmsg_name(o);struct sockaddr_in6 *addr6 = (void *)addr;char buff[INET6_ADDRSTRLEN + 1];const char *name;void *paddr;if (ctx->af == AF_INET6)paddr = &addr6->sin6_addr;elsepaddr = &addr->sin_addr;name = inet_ntop(ctx->af, paddr, buff, sizeof(buff));if (!name)name = "<INVALID>";fprintf(stderr, "received %u bytes %d from [%s]:%d\n",io_uring_recvmsg_payload_length(o, cqe->res, &ctx->msg),o->namelen, name, (int)ntohs(addr->sin_port));}if (get_sqe(ctx, &sqe))return -1;ctx->send[idx].iov = (struct iovec) {.iov_base = io_uring_recvmsg_payload(o, &ctx->msg),.iov_len =io_uring_recvmsg_payload_length(o, cqe->res, &ctx->msg)};ctx->send[idx].msg = (struct msghdr) {.msg_namelen = o->namelen,.msg_name = io_uring_recvmsg_name(o),.msg_control = NULL,.msg_controllen = 0,.msg_iov = &ctx->send[idx].iov,.msg_iovlen = 1};io_uring_prep_sendmsg(sqe, fdidx, &ctx->send[idx].msg, 0);io_uring_sqe_set_data64(sqe, idx);sqe->flags |= IOSQE_FIXED_FILE;return 0;
}
static int process_cqe(struct ctx *ctx, struct io_uring_cqe *cqe, int fdidx)
{if (cqe->user_data < BUFFERS)return process_cqe_send(ctx, cqe);elsereturn process_cqe_recv(ctx, cqe, fdidx);
}int main(int argc, char *argv[])
{struct ctx ctx;int ret;int port = -1;int sockfd;int opt;struct io_uring_cqe *cqes[CQES];unsigned int count, i;memset(&ctx, 0, sizeof(ctx));ctx.verbose = false;ctx.af = AF_INET;ctx.buf_shift = BUF_SHIFT;while ((opt = getopt(argc, argv, "6vp:b:")) != -1) {switch (opt) {case '6':ctx.af = AF_INET6;break;case 'p':port = atoi(optarg);break;case 'b':ctx.buf_shift = atoi(optarg);break;case 'v':ctx.verbose = true;break;default:fprintf(stderr, "Usage: %s [-p port] ""[-b log2(BufferSize)] [-6] [-v]\n",argv[0]);exit(-1);}}sockfd = setup_sock(ctx.af, port);if (sockfd < 0)return 1;if (setup_context(&ctx)) {close(sockfd);return 1;}ret = io_uring_register_files(&ctx.ring, &sockfd, 1);if (ret) {fprintf(stderr, "register files: %s\n", strerror(-ret));return -1;}ret = add_recv(&ctx, 0);if (ret)return 1;while (true) {ret = io_uring_submit_and_wait(&ctx.ring, 1);if (ret == -EINTR)continue;if (ret < 0) {fprintf(stderr, "submit and wait failed %d\n", ret);break;}count = io_uring_peek_batch_cqe(&ctx.ring, &cqes[0], CQES);for (i = 0; i < count; i++) {ret = process_cqe(&ctx, cqes[i], 0);if (ret)goto cleanup;}io_uring_cq_advance(&ctx.ring, count);}cleanup:cleanup_context(&ctx);close(sockfd);return ret;
}

更多的代码可以参看GITHUB中的相关代码。

四、技术说明

通过上面的分析,大家是否有所明白。包括DPDK等一些高效的框架,一些主要的特点,基本都是通过共享内存来减少内核与应用层的交互(特别是数据的拷贝),通过无锁队列来实现高效的非阻塞的通信。这意味着内核以后的工作可能会尽量减少和上层应用的直接通信。换句话说,内核要做一个高效的管理者和协调者而不是一个大而全的工作者。
这其实给开发者的一个借鉴在于:设计和开发时,要适当抽象(抽象越高,意味着引入的中间层越多),在可能的前提下尽量减少中间环节;引入新技术,如无锁编程等;异步工作是方向。
以Linux的IO技术发展为例,可以为两大部分,即内核原生支持和非原生支持(DPDK)。而原生支持里,从同步阻塞IO开始慢慢发展到异步IO的过程,又到io_uring融入内核的过程,就是给予开发者借鉴的一个经典的例子。可能大多数开发者意识不到这一点,也有可能在国内这个过程非常迅速甚至忽略某些中间过程。但实际上,整个的方向和发展的过程的经历基本是类似的。
本文对io_uring只是一个基础的介绍说明,大家有兴趣可以深入学习并引入自己的工程中去。实践出真知。

五、总结

这里没有更细节展开谈IO模型和同步异步以及阻塞非阻塞的问题,这些基础的问题,不明白的需要去查阅相关资料。这篇文章只是一个开始,以后有机会的话,会将整个网络开发进行整体的分析说明和具体应用。
技术的进步一定是向前发展的,开发者们一定睁开眼睛,瞭望世界,不要固守一隅,夜郎自大。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149780.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript系列从入门到精通系列第十六篇:JavaScript使用函数作为属性以及枚举对象中的属性

文章目录 前言 1&#xff1a;对象属性可以是函数 2&#xff1a;对象属性函数被称为方法 一&#xff1a;枚举对象中的属性 1&#xff1a;for...in 枚举对象中的属性 前言 1&#xff1a;对象属性可以是函数 对象的属性值可以是任何的数据类型&#xff0c;也可以是函数。 v…

去雨去雪去雾算法之本地与服务器的TensorBoard使用教程

在进行去雨去雾去雪算法实验时&#xff0c;需要注意几个参数设置&#xff0c;num_workers只能设置为0&#xff0c;否则会报各种稀奇古怪的错误。 本地使用TensorBoard 此外&#xff0c;发现生成的文件是events.out.tfevents格式的&#xff0c;查询了一番得知该文件是通过Tens…

云原生边缘计算KubeEdge安装配置

1. K8S集群部署&#xff0c;可以参考如下博客 请安装k8s集群&#xff0c;centos安装k8s集群 请安装k8s集群&#xff0c;ubuntu安装k8s集群 2.安装kubEedge 2.1 编辑kube-proxy使用ipvs代理 kubectl edit configmaps kube-proxy -n kube-system #修改kube-proxy#大约在40多行…

lv7 嵌入式开发-网络编程开发 12 IP协议与ethernet协议

目录 1 IP协议作用和意义 2 IP数据报首部格式 3 IP数据报分片 4 以太网协议作用和意义&#xff08;链路层&#xff09; 5 练习 1 IP协议作用和意义 IP网的意义 当互联网上的主机进行通信时&#xff0c;就好像在一个网络上通信一样&#xff0c;看不见互连的各具体的网络异…

Vue中实现自定义编辑邮件发送到指定邮箱(纯前端实现)

formspree里面注册账号 注册完成后进入后台新建项目并且新建表单 这一步完成之后你将得到一个地址 最后就是在项目中请求这个地址 关键代码如下&#xff1a; submitForm() {this.fullscreenLoading true;this.$axios({method: "post",url: "https://xxxxxxx…

golang gin框架1——简单案例以及api版本控制

gin框架 gin是golang的一个后台WEB框架 简单案例 package mainimport ("github.com/gin-gonic/gin""net/http" )func main() {r : gin.Default()r.GET("/ping", func(c *gin.Context) {//以json形式输出&#xff0c;还可以xml protobufc.JSON…

【数据结构初阶】六、线性表中的队列(C语言 -- 链式结构实现队列)

相关代码gitee自取&#xff1a; C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 【数据结构初阶】五、线性表中的栈&#xff08;C语言 -- 顺序表实现栈&#xff09;_高高的胖子的博客-CSDN博客 1 . 队列&#xff08;Queue&#xff09; 队列的概念和结构&#xf…

mysql面试题16:说说分库与分表的设计?常用的分库分表中间件有哪些?分库分表可能遇到的问题有哪些?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:说说分库与分表的设计? 在MySQL中,分库与分表是常用的数据库水平扩展技术,可以提高数据库的吞吐量和扩展性。下面将具体讲解MySQL中分库与分表…

W25Q128芯片手册精读

文章目录 前言1. 概述2. 特性3. 封装类型和引脚配置3.1 8焊盘WSON 8x6 mm3.2其他封装 4. 引脚描述4.1 片选4.2 串行数据输入输出4.3 写保护4.4 保持脚4.5 时钟 5. 块图6. 功能描述6.1 SPI功能6.1.1 标准SPI6.1.2 双通道SPI6.1.3 四通道SPI6.1.4 保持功能 6.2 写保护6.2.1 写保护…

Python逐日填补Excel中的日期并用0值填充缺失日期的数据

本文介绍基于Python语言&#xff0c;读取一个不同的列表示不同的日期的.csv格式文件&#xff0c;将其中缺失的日期数值加以填补&#xff1b;并用0值对这些缺失日期对应的数据加以填充的方法。 首先&#xff0c;我们明确一下本文的需求。现在有一个.csv格式文件&#xff0c;其第…

C/C++——内存管理

1.为什么存在动态内存分配 灵活性 静态内存分配是在编译时确定的&#xff0c;程序执行过程中无法改变所分配的内存大小&#xff1b;动态内存分配可以根本程序的运行环境来动态分配和释放空间&#xff0c;提供了更大的灵活性 动态数据结构 有些数据结构的大小和结构在编译时…

隐式意图和Activity启动模式:实现文件打开应用【Android、隐式意图】

隐式意图和Activity启动模式&#xff1a;实现文件打开应用 在Android开发中&#xff0c;隐式意图和Activity启动模式是两个重要的概念。它们可以用于实现不同应用之间的协作和交互。在本篇博客中&#xff0c;我们将探讨如何创建一个Android应用&#xff0c;该应用可以从外部应…

IEEE802系列协议知识点总结

IEEE 802 协议包含了以下多种子协议。把这些协议汇集在一起就叫IEEE 802 协议集。 (1)IEEE802.1 IEEE 802.1协议提供高层标准的框架&#xff0c;包括端到端协议、网络互连、网络管理、路由选择、桥接和性能测量。 •IEEE 802.1d:生成树协议(Spanning Tree Protocol&#xff0c…

C++笔记之不同buffer数量下的生产者-消费者机制

C笔记之不同buffer数量下的生产者-消费者机制 文章目录 C笔记之不同buffer数量下的生产者-消费者机制0.在不同的缓冲区数量下&#xff0c;生产者-消费者机制的实现方式和行为的区别1.最简单的生产者-消费者实现&#xff1a;抄自 https://mp.weixin.qq.com/s/G1lHNcbYU1lUlfugXn…

基于虚拟阻抗的下垂控制——孤岛双机并联Simulink仿真

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Oracle Database Express Edition (XE)配置与部署

获取下载安装包 https://www.oracle.com/cn/database/technologies/xe-downloads.htmlhttps://yum.oracle.com/repo/OracleLinux/OL7/latest/x86_64/index.html安装.rpm安装包 cd /usr/local/src wget https://download.oracle.com/otn-pub/otn_software/db-express/oracle-d…

Vue中如何进行分布式搜索与全文搜索(如Elasticsearch)

在Vue中实现分布式搜索与全文搜索&#xff08;使用Elasticsearch&#xff09; 分布式搜索和全文搜索在现代应用程序中变得越来越重要&#xff0c;因为它们可以帮助用户快速查找和检索大量数据。Elasticsearch是一种强大的分布式搜索引擎&#xff0c;它可以用于实现高性能的全文…

Gmail 将停止支持基本 HTML 视图

根据 Google 支持文档的更新内容&#xff0c;Gmail 将从明年 1 月起停止支持基本 HTML 视图。 ▲ Gmai 基本 HTML 视图界面 目前网页版 Gmail 提供两个界面&#xff1a;基本 HTML 视图和标准视图。停止支持基本 HTML 视图后&#xff0c;当前打开经典模式的基本 HTML 视图模式 …

苹果签名的MDM(Mobile Device Management)?是怎么做的?优势是什么?什么场合需要应用到?

苹果签名有多少种类之TF签名(TestFlight签名&#xff09;是什么&#xff1f;优势是什么&#xff1f;什么场合需要应用到&#xff1f; 苹果签名有多少种类之TF签名(TestFlight签名&#xff09;是什么&#xff1f;优势是什么&#xff1f;什么场合需要应用到&#xff1f; MDM&am…

基于Matlab求解高教社杯数学建模竞赛(cumcm2010A题)-储油罐的变位识别与罐容表标定(附上源码+数据+题目)

文章目录 题目解题源码数据下载 题目 通常加油站都有若干个储存燃油的地下储油罐&#xff0c;并且一般都有与之配套的“油位计量管理系统”&#xff0c;采用流量计和油位计来测量进/出油量与罐内油位高度等数据&#xff0c;通过预先标定的罐容表&#xff08;即罐内油位高度与储…