《视觉 SLAM 十四讲》V2 第 5 讲 相机与图像

文章目录

      • 相机 内参 && 外参
      • 5.1.2 畸变模型
      • 单目相机的成像过程
      • 5.1.3 双目相机模型
      • 5.1.4 RGB-D 相机模型
    • 实践
      • 5.3.1 OpenCV 基础操作 【Code】
        • OpenCV版本查看
      • 5.3.2 图像去畸变 【Code】
      • 5.4.1 双目视觉 视差图 点云 【Code】
      • 5.4.2 RGB-D 点云 拼合成 地图【Code】
    • 习题
      • 题1
      • √ 题2
      • 题3
      • √ 题4
      • 题5
      • 题6
      • 题7

在这里插入图片描述

空间点 投影到 相机成像平面

前面内容总结:
1、机器人如何表示自身位姿

视觉SLAM: 观测主要是指 相机成像 的过程

投影过程描述: 针孔 + 畸变

相机 内参 && 外参

在这里插入图片描述
在这里插入图片描述

像素坐标系 与 成像平面之间,相差了一个缩放 和一个原点的平移。

像素坐标系:
原点 o ′ o^{\prime} o 位于 图像 左上角
u u u 轴 向右 与 x x x 轴 平行
v v v 轴 向下 与 y y y 轴 平行

设像素坐标在 u u u 轴 上缩放了 α \alpha α 倍 , 在 v v v 轴 上缩放了 β \beta β 倍。同时原点 平移了 [ c x , c y ] T [c_x, c_y]^T [cx,cy]T
则 点 p ′ p^{\prime} p 的坐标 与像素坐标 [ u , v ] T [u, v]^T [u,v]T 之间的关系
{ u = α X ′ + c x = 由式 5.2 α ⋅ f X Z + c x = 令 f x = α f f x X Z + c x v = β Y ′ + c y = 由式 5.2 β ⋅ f Y Z + c x = 令 f y = β f f y Y Z + c y \begin{equation*} \begin{cases} u = \alpha X^{\prime} + c_x \overset{由式5.2}{=} \alpha ·f\frac{X}{Z} + c_x \overset{令f_x = \alpha f}{=} f_x\frac{X}{Z} + c_x \\ v = \beta Y^{\prime} + c_y \overset{由式5.2}{=} \beta·f\frac{Y}{Z} + c_x \overset{令f_y = \beta f}{=} f_y\frac{Y}{Z} + c_y \end{cases} \end{equation*} {u=αX+cx=由式5.2αfZX+cx=fx=αffxZX+cxv=βY+cy=由式5.2βfZY+cx=fy=βffyZY+cy

其中 f x = α f , f y = β f f_x = \alpha f, f_y=\beta f fx=αf,fy=βf
f f f 的单位 为
α , β \alpha, \beta α,β 的单位为 像素/米
f x , f y f_x, f_y fx,fy c x , c y c_x, c_y cx,cy 的单位为 像素

[ u v 1 ] = [ f x 0 c x 0 f y c y 0 0 1 ] [ X Z Y Z 1 ] = 1 Z [ f x 0 c x 0 f y c y 0 0 1 ] [ X Y Z ] = d e f 1 Z K P \begin{align*}\begin{bmatrix}u\\ v\\ 1\end{bmatrix} &=\begin{bmatrix}f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 &1\end{bmatrix}\begin{bmatrix}\frac{X}{Z}\\ \frac{Y}{Z}\\ 1\end{bmatrix}\\ &=\frac{1}{Z}\begin{bmatrix}f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 &1\end{bmatrix}\begin{bmatrix}X\\ Y\\ Z\end{bmatrix}\\ &\overset{\mathrm{def}}{=} \frac{1}{Z}\bm{KP} \end{align*} uv1 = fx000fy0cxcy1 ZXZY1 =Z1 fx000fy0cxcy1 XYZ =defZ1KP

相机的内参数(Camera Intrinsics) 矩阵 K \bm{K} K

K = [ f x 0 c x 0 f y c y 0 0 1 ] \bm{K} = \begin{bmatrix}f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 &1\end{bmatrix} K= fx000fy0cxcy1

标定:自己确定相机的内参【相机生产厂商未告知相机内参的情形】

  • 标定算法: 单目棋盘格张正友标定法

相机在运动 ——> P P P 的相机坐标 = 其世界坐标 P w \bm{P_\mathrm{w}} Pw 根据相机位姿转换到 相机坐标系下。

Z P u v = Z [ u v 1 ] = K ( R P w + t ) = K T P w Z\bm{P}_{uv}=Z\begin{bmatrix} u \\v \\1\end{bmatrix}=\bm{K(RP_{\mathrm{w}}+t)=KTP_\mathrm{w}} ZPuv=Z uv1 =K(RPw+t)=KTPw

相机的外参数(Camera Extrinsics):相机的位姿 R \bm{R} R t \bm{t} t

机器人 或 自动驾驶: 外参 = 相机坐标系 到机器人本体坐标系 之间的 变换。

  • 描述 相机安装在什么地方

5.1.2 畸变模型

径向畸变透镜形状引起的畸变(失真)。坐标点 距离原点的长度发生了变化。
在这里插入图片描述

桶形畸变:图像放大率 随着 与光轴之间的距离 增加 而减小
枕型畸变:图像放大率 随着 与光轴之间的距离 增加 而增加。

  • 穿过图像中心和光轴有交点的直线还能保持形状不变。

切向畸变:相机在在组装过程中能使 透镜和成像面 严格平行水平夹角发行了变化。

在这里插入图片描述

通过5个畸变系数( k 1 , k 2 , k 3 , p 1 , p 2 k_1,k_2,k_3,p_1,p_2 k1,k2,k3,p1,p2)找到某个点在像素平面的正确位置:
在这里插入图片描述

单目相机的成像过程

在这里插入图片描述

5.1.3 双目相机模型

在这里插入图片描述
z − f z = b − u L + u R b \frac{z-f}{z}=\frac{b-u_L+u_R}{b} zzf=bbuL+uR
令 d = u L − u R 令d = u_L-u_R d=uLuR 视差

z − f z = b − d b \frac{z-f}{z}=\frac{b-d}{b} zzf=bbd

1 − f z = 1 − d b 1-\frac{f}{z}=1-\frac{d}{b} 1zf=1bd

f z = d b \frac{f}{z}=\frac{d}{b} zf=bd

z = f b d z=\frac{fb}{d} z=dfb

由于计算量的原因,双目深度估计需要使用 GPU 或 FPGA 来实时计算。

5.1.4 RGB-D 相机模型

在这里插入图片描述
在这里插入图片描述
RGB-D 相机: 向探测目标 发射一束 光线(通常是红外光)。

RGB-D 不足:
1、用红外光进行深度测量,容易受到 日光或其他传感器发射的红外光干扰。不能在室外使用。
2、多个RGB-D相机之间也会相互干扰。
3、透射材质因为接收不到反射光,无法测量。

在这里插入图片描述
h h h 对应 行数
w w w 对应 列数

在这里插入图片描述
OpenCV: 通道顺序为 BGR

在这里插入图片描述

Eigen对于固定大小的矩阵使用起来效率更高。

实践

5.3.1 OpenCV 基础操作 【Code】

OpenCV版本查看
python3 -c "import cv2; print(cv2.__version__)"

可能报错

/home/xixi/Downloads/slambook2-master/ch5/basicuse/basicuse.cpp:6:9: fatal error: opencv2/core/core.cpp: No such file or directory6 | #include<opencv2/core/core.cpp>

OpenCV没安装好
gtk/gtk.h报错链接
到 OpenCV 安装包

mkdir build && cd build
cmake ..
make -j4  # 之前 -j8有误,改4试试
sudo make install

——————————————————

mkdir build && cd build 
cmake ..
make 
./basicuse ubuntu.png   ## ubuntu.png 要放在 build文件夹里; 或者提供该图片的绝对路径;或相对于build文件夹的相对路径

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(basicuse)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})add_executable(basicuse basicuse.cpp)
# 链接OpenCV库
target_link_libraries(basicuse ${OpenCV_LIBS})

basicuse.cpp

#include<iostream>
#include<chrono> // 计时using namespace std;#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>// high-level graphical user interfaceusing namespace cv;int main(int argc, char **argv){// 读取argv[1] 指定的图像cv::Mat image;image = cv::imread(argv[1]);  // 从命令行的第一个参数中 读取图像位置// 判断图像是否 正确读取if (image.data == nullptr){cerr << "文件" << argv[1] << "不存在。" << endl;return 0; }// 输出文件的基本信息cout << "图像宽为" << image.cols << ",高为" << image.rows<< ", 通道数为" << image.channels()  << endl;cv::imshow("image", image);cv::waitKey(0);  // 暂停程序,等待一个按键输入cv::destroyAllWindows();return 0;
}

在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<chrono> // 计时using namespace std;#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>// high-level graphical user interfaceusing namespace cv;int main(int argc, char **argv){// 读取argv[1] 指定的图像cv::Mat image;image = cv::imread(argv[1]);  // 从命令行的第一个参数中 读取图像位置// 判断image的类型if (image.type() != CV_8UC1 && image.type() != CV_8UC3) {// 图像类型不符合要求cout << "请输入一张彩色图或灰度图." << endl;return 0;}// 遍历图像, 请注意以下遍历方式亦可使用于随机像素访问// 使用 std::chrono 来给算法计时chrono::steady_clock::time_point t1 = chrono::steady_clock::now();for (size_t y = 0; y < image.rows; y++) {// 用cv::Mat::ptr获得图像的行指针unsigned char *row_ptr = image.ptr<unsigned char>(y);  // row_ptr是第y行的头指针for (size_t x = 0; x < image.cols; x++) {// 访问位于 x,y 处的像素unsigned char *data_ptr = &row_ptr[x * image.channels()]; // data_ptr 指向待访问的像素数据// 输出该像素的每个通道,如果是灰度图就只有一个通道for (int c = 0; c != image.channels(); c++) {unsigned char data = data_ptr[c]; // data为I(x,y)第c个通道的值}}}chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast < chrono::duration < double >> (t2 - t1);cout << "遍历图像用时:" << time_used.count() << " 秒。" << endl;return 0;
}

在这里插入图片描述

#include<iostream>
#include<chrono> // 计时using namespace std;#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>// high-level graphical user interfaceusing namespace cv;int main(int argc, char **argv){// 读取argv[1] 指定的图像cv::Mat image;image = cv::imread(argv[1]);  // 从命令行的第一个参数中 读取图像位置// 关于 cv::Mat 的拷贝// 直接赋值并不会拷贝数据   浅拷贝 会 同时修改原始数据cv::Mat image_another = image;// 修改 image_another 会导致 image 发生变化image_another(cv::Rect(0, 0, 100, 100)).setTo(0); // 将左上角100*100的块置零cv::imshow("image", image);cv::waitKey(0);// 使用clone函数来拷贝数据cv::Mat image_clone = image.clone();image_clone(cv::Rect(0, 0, 100, 100)).setTo(255);cv::imshow("image", image);cv::imshow("image_clone", image_clone);cv::waitKey(0);// 对于图像还有很多基本的操作,如剪切,旋转,缩放等,限于篇幅就不一一介绍了,请参看OpenCV官方文档查询每个函数的调用方法.cv::destroyAllWindows();return 0;
}

5.3.2 图像去畸变 【Code】

cv::Undistort()

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(myOpenCV)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})add_executable(myOpenCV undistortImage.cpp)
# 链接OpenCV库
target_link_libraries(myOpenCV ${OpenCV_LIBS})

undistortImage.cpp

#include <opencv2/opencv.hpp>
#include <string>using namespace std;string image_file = "../distorted.png";   // 请确保路径正确 int main(int argc, char **argv) {// 本程序实现去畸变部分的代码。尽管我们可以调用OpenCV的去畸变,但自己实现一遍有助于理解。// 畸变参数double k1 = -0.28340811, k2 = 0.07395907, p1 = 0.00019359, p2 = 1.76187114e-05;// 内参double fx = 458.654, fy = 457.296, cx = 367.215, cy = 248.375;cv::Mat image = cv::imread(image_file, 0);   // 图像是灰度图,CV_8UC1int rows = image.rows, cols = image.cols;cv::Mat image_undistort = cv::Mat(rows, cols, CV_8UC1);   // 去畸变以后的图// 计算去畸变后图像的内容for (int v = 0; v < rows; v++) {for (int u = 0; u < cols; u++) {// 按照公式,计算点(u,v)对应到畸变图像中的坐标(u_distorted, v_distorted)double x = (u - cx) / fx, y = (v - cy) / fy;double r = sqrt(x * x + y * y);double x_distorted = x * (1 + k1 * r * r + k2 * r * r * r * r) + 2 * p1 * x * y + p2 * (r * r + 2 * x * x);double y_distorted = y * (1 + k1 * r * r + k2 * r * r * r * r) + p1 * (r * r + 2 * y * y) + 2 * p2 * x * y;double u_distorted = fx * x_distorted + cx;double v_distorted = fy * y_distorted + cy;// 赋值 (最近邻插值)if (u_distorted >= 0 && v_distorted >= 0 && u_distorted < cols && v_distorted < rows) {image_undistort.at<uchar>(v, u) = image.at<uchar>((int) v_distorted, (int) u_distorted);} else {image_undistort.at<uchar>(v, u) = 0;}}}// 画图去畸变后图像cv::imshow("distorted", image);cv::imshow("undistorted", image_undistort);cv::waitKey();return 0;
}

在这里插入图片描述

5.4.1 双目视觉 视差图 点云 【Code】

在这里插入图片描述
在这里插入图片描述
CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(stereoVision)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})find_package(Pangolin REQUIRED)add_executable(stereoVision stereoVision.cpp)
target_link_libraries(stereoVision ${OpenCV_LIBS} ${Pangolin_LIBRARIES})

stereoVision.cpp

#include <opencv2/opencv.hpp>
#include <vector>
#include <string>
#include <Eigen/Core>
#include <pangolin/pangolin.h>
#include <unistd.h>using namespace std;
using namespace Eigen;// 文件路径
string left_file = "../left.png";
string right_file = "../right.png";// 在pangolin中画图,已写好,无需调整
void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud);int main(int argc, char **argv) {// 内参double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;// 基线double b = 0.573;// 读取图像cv::Mat left = cv::imread(left_file, 0);cv::Mat right = cv::imread(right_file, 0);cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(0, 96, 9, 8 * 9 * 9, 32 * 9 * 9, 1, 63, 10, 100, 32);    // 神奇的参数cv::Mat disparity_sgbm, disparity;sgbm->compute(left, right, disparity_sgbm);disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);// 生成点云vector<Vector4d, Eigen::aligned_allocator<Vector4d>> pointcloud;// 如果你的机器慢,请把后面的v++和u++改成v+=2, u+=2for (int v = 0; v < left.rows; v++)for (int u = 0; u < left.cols; u++) {if (disparity.at<float>(v, u) <= 0.0 || disparity.at<float>(v, u) >= 96.0) continue;Vector4d point(0, 0, 0, left.at<uchar>(v, u) / 255.0); // 前三维为xyz,第四维为颜色// 根据双目模型计算 point 的位置double x = (u - cx) / fx;double y = (v - cy) / fy;double depth = fx * b / (disparity.at<float>(v, u));point[0] = x * depth;point[1] = y * depth;point[2] = depth;pointcloud.push_back(point);}cv::imshow("disparity", disparity / 96.0);cv::waitKey(0);// 画出点云showPointCloud(pointcloud);return 0;
}void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud) {if (pointcloud.empty()) {cerr << "Point cloud is empty!" << endl;return;}pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);glEnable(GL_DEPTH_TEST);glEnable(GL_BLEND);glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);pangolin::OpenGlRenderState s_cam(pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0));pangolin::View &d_cam = pangolin::CreateDisplay().SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f).SetHandler(new pangolin::Handler3D(s_cam));while (pangolin::ShouldQuit() == false) {glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);d_cam.Activate(s_cam);glClearColor(1.0f, 1.0f, 1.0f, 1.0f);glPointSize(2);glBegin(GL_POINTS);for (auto &p: pointcloud) {glColor3f(p[3], p[3], p[3]);glVertex3d(p[0], p[1], p[2]);}glEnd();pangolin::FinishFrame();usleep(5000);   // sleep 5 ms}return;
}

视差图:
在这里插入图片描述

byzanz-record -x 147 -y 76 -w 1386 -h 768  -d 15 --delay=5 -c  /home/xixi/myGIF/test.gif

在这里插入图片描述

在这里插入图片描述

5.4.2 RGB-D 点云 拼合成 地图【Code】

通过物理方法 获得 像素深度信息
在这里插入图片描述
在这里插入图片描述

mkdir build && cd build
cmake ..
make 
./joinMap

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(joinMap)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})# Sophus 库
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})#  Pangolin 库
find_package(Pangolin REQUIRED)
include_directories(${Pangolin_INCLUDE_DIRS})add_executable(joinMap joinMap.cpp)
target_link_libraries(joinMap ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Sophus_LIBRARIES}) 
# 上面这句 一定要 链接到  Sophus

joinMap.cpp

#include <iostream>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <boost/format.hpp>  // for formating strings
#include <pangolin/pangolin.h>
#include <sophus/se3.h>using namespace Sophus;  // 原代码少了 这句
using namespace std;
typedef vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> TrajectoryType;
typedef Eigen::Matrix<double, 6, 1> Vector6d;// 在pangolin中画图,已写好,无需调整
void showPointCloud(const vector<Vector6d, Eigen::aligned_allocator<Vector6d>> &pointcloud);int main(int argc, char **argv) {vector<cv::Mat> colorImgs, depthImgs;    // 彩色图和深度图TrajectoryType poses;         // 相机位姿ifstream fin("../pose.txt");if (!fin) {cerr << "请在有pose.txt的目录下运行此程序" << endl;return 1;}for (int i = 0; i < 5; i++) {boost::format fmt("../%s/%d.%s"); //图像文件格式  // !! 这里的路径也要改colorImgs.push_back(cv::imread((fmt % "color" % (i + 1) % "png").str()));depthImgs.push_back(cv::imread((fmt % "depth" % (i + 1) % "pgm").str(), -1)); // 使用-1读取原始图像double data[7] = {0};for (auto &d:data)fin >> d;Sophus::SE3 pose(Eigen::Quaterniond(data[6], data[3], data[4], data[5]),Eigen::Vector3d(data[0], data[1], data[2]));poses.push_back(pose);}// 计算点云并拼接// 相机内参 double cx = 325.5;double cy = 253.5;double fx = 518.0;double fy = 519.0;double depthScale = 1000.0;vector<Vector6d, Eigen::aligned_allocator<Vector6d>> pointcloud;pointcloud.reserve(1000000);for (int i = 0; i < 5; i++) {cout << "转换图像中: " << i + 1 << endl;cv::Mat color = colorImgs[i];cv::Mat depth = depthImgs[i];Sophus::SE3 T = poses[i];for (int v = 0; v < color.rows; v++)for (int u = 0; u < color.cols; u++) {unsigned int d = depth.ptr<unsigned short>(v)[u]; // 深度值if (d == 0) continue; // 为0表示没有测量到Eigen::Vector3d point;point[2] = double(d) / depthScale;point[0] = (u - cx) * point[2] / fx;point[1] = (v - cy) * point[2] / fy;Eigen::Vector3d pointWorld = T * point;Vector6d p;p.head<3>() = pointWorld;p[5] = color.data[v * color.step + u * color.channels()];   // bluep[4] = color.data[v * color.step + u * color.channels() + 1]; // greenp[3] = color.data[v * color.step + u * color.channels() + 2]; // redpointcloud.push_back(p);}}cout << "点云共有" << pointcloud.size() << "个点." << endl;showPointCloud(pointcloud);return 0;
}void showPointCloud(const vector<Vector6d, Eigen::aligned_allocator<Vector6d>> &pointcloud) {if (pointcloud.empty()) {cerr << "Point cloud is empty!" << endl;return;}pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);glEnable(GL_DEPTH_TEST);glEnable(GL_BLEND);glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);pangolin::OpenGlRenderState s_cam(pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0));pangolin::View &d_cam = pangolin::CreateDisplay().SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f).SetHandler(new pangolin::Handler3D(s_cam));while (pangolin::ShouldQuit() == false) {glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);d_cam.Activate(s_cam);glClearColor(1.0f, 1.0f, 1.0f, 1.0f);glPointSize(2);glBegin(GL_POINTS);for (auto &p: pointcloud) {glColor3d(p[3] / 255.0, p[4] / 255.0, p[5] / 255.0);glVertex3d(p[0], p[1], p[2]);}glEnd();pangolin::FinishFrame();usleep(5000);   // sleep 5 ms}return;
}

在这里插入图片描述

在这里插入图片描述

byzanz-record -x 72 -y 64 -w 998 -h 605  -d 15 --delay=5 -c  /home/xixi/myGIF/test.gif

在这里插入图片描述

习题

待做:

  • 找OpenCV里的标定 方法
  • 整理链接里的内容

在这里插入图片描述

题1

相机内参标定

√ 题2

相机内参 K \bm{K} K 的物理意义:可将世界坐标系某点 P P P归一化坐标 转成 像素坐标 P u v = K [ X / Z , Y / Z , 1 ] T \bm{P_{uv}=K}[X/Z,Y/Z, 1]^T Puv=K[X/Z,Y/Z,1]T

图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
当分辨率变为原来的两倍时, 显然对于同一位置,以像素为单位的 c x c_x cx c y c_y cy 均变为原来的2倍。而以 像素/每米 为单位的 α \alpha α β \beta β 变成原来的 2 倍。 f f f 不变,则 f x = α f f_x = \alpha f fx=αf f y = β f f_y = \beta f fy=βf 也变为原来的 2 倍。
综上:当相机的分辨率变为原来的2倍时, c x c_x cx c y c_y cy f x f_x fx f y f_y fy 均变为原来的 2 倍。

题3

鱼眼或全景相机 标定
链接1
链接2
————————————

√ 题4

异同:
工业相机常见的曝光方式:
1、全局曝光(Global shutter,也称全局快门、帧曝光

  • 光圈打开时,工业相机中的图像传感器上所有像素点可以在同一时刻曝光,当光圈关闭后,所有像素同时结束曝光,然后输出像素数据。全局曝光的工业相机可以一次拍摄物体的整体图像后再输出,因此在拍摄高速运动物体时图像不会偏移,能够达到无失真的效果。
  • CCD(电荷耦合)元件 为这种曝光 方式

2、卷帘曝光(Rolling shutter,也称卷帘快门、行曝光

  • 采用的是逐行扫描逐行曝光的方式,当上一行的所有像素同时曝光后,下一行的所有像素再同时曝光,直至所有行曝光完成。
  • 当曝光不当或物体移动较快时,会出现部分曝光(partial exposure)、斜坡图形(skew)、晃动(wobble) 等现象。这种Rolling shutter方式拍摄出现的现象,称为“果冻效应”。
  • 大部分CMOS相机使用卷帘快门(rolling shutter)

3、基于卷帘曝光并结合全局曝光优势的全局复位释放曝光(Global Reset Release Shutter,GRR)

优缺点:
Global shutter适用于拍摄高速运动物体;且在光线有明暗变化的时候,Global shutter sensor不会有明暗瑕疵。
Global shutter需要对每个像素都要增加一个存储单元,这样增加了sensor的生产难度以及成本
Rolling Shutter sensor适用于拍摄运动速度相对较的物体或场景,可获得更高的成像信噪比。 Rolling Shutter 在低噪、像素损失、高感、动态范围等有优势。

————————

题5

RGB-D 相机标定
在这里插入图片描述

链接
链接2

题6

遍历图像的方法
链接
链接2

题7

OpenCV官方教程学习
官方文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/149296.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】文件权限详解

&#x1f341; 博主 "开着拖拉机回家"带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——&#x1f390;开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 &#x1f390;✨&#x1f341; &#x1fa81;&#x1f341; 希望本文能够给您带来一定的…

在word文档里面插入漂亮的伪代码

推荐用texsword.0.8 安装与界面 下载链接&#xff1a;https://sourceforge.net/projects/texsword/ 极为轻便&#xff0c;是Word的一个宏 安装过程也是极为简单&#xff0c;复制解压后的 texsword.dotm 文件到 C:\Users\{YOUR_USER_NAME}\AppData\Roaming\Microsoft\Word\ST…

分布式架构篇

1、微服务 微服务架构风格&#xff0c;就像是把一个单独的应用程序开发为一套小服务&#xff0c;每个服务运行在自己的进程中&#xff0c;并使用轻量级机制通信&#xff0c;通常是 HTTP API。这些服务围绕业务能力来构建&#xff0c;并通过完全自动化部署机制来独立部署。这些…

React框架核心原理

一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心&#xff0c;里面封装了<Router>&#xff0c;<Route>&#xff0c;<Switch>等核心组件,实现了从路由的改变到组件的更新…

Ubuntu Server CLI专业提示

基础 网络 获取所有接口的IP地址 networkctl status 显示主机的所有IP地址 hostname -I 启用/禁用接口 ip link set <interface> up ip link set <interface> down 显示路线 ip route 将使用哪条路线到达主机 ip route get <IP> 安全 显示已登录的用户 w…

MySQL数据库单表查询

素材: 表名: worker-- 表中字段均为中文&#xff0c;比如 部门号 工资 职工号 参加工作 等 CREATE TABLE worker ( 部门号 int(11) NOT NULL, 职工号 int(11) NOT NULL, 工作时间 date NOT NULL, 工资 float(8,2) NOT NULL, 政治面貌 varchar(10) NOT NULL DEFAULT 群…

想要精通算法和SQL的成长之路 - 恢复二叉搜索树和有序链表转换二叉搜索树

想要精通算法和SQL的成长之路 - 恢复二叉搜索树和有序链表转换二叉搜索树 前言一. 恢复二叉搜索树二. 有序链表转换二叉搜索树 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 恢复二叉搜索树 原题链接 首先&#xff0c;一个正常地二叉搜索树在中序遍历下&#xff0c;遍历…

Vue组件路由

1&#xff0c;安装vue-router组件&#xff0c;终端输入&#xff1a; npm i vue-router3.5.3 2&#xff0c;在src文件夹下创建router目录 3&#xff0c;创建index.js文件&#xff0c;配置路由&#xff0c;导入需要路由的组件。以后每次添加路由只要在routes中改变即可。 impo…

CTFHUB - SSRF

目录 SSRF漏洞 攻击对象 攻击形式 产生漏洞的函数 file_get_contents() fsockopen() curl_exec() 提高危害 利用的伪协议 file dict gopher 内网访问 伪协议读取文件 端口扫描 POST请求 总结 上传文件 总结 FastCGI协议 CGI和FastCGI的区别 FastCGI协议 …

如何查看postgresql中的数据库大小?

你可以使用以下命令来查看PostgreSQL数据库的大小&#xff1a; SELECT pg_database.datname as "database_name", pg_size_pretty(pg_database_size(pg_database.datname)) AS size_in_mb FROM pg_database ORDER by size_in_mb DESC;这将返回一个表格&#xff0…

一种4g扫码付费通电控制器方案

之前开发了一款扫码付款通电控制器 功能&#xff1a;用户扫码付款后设备通电&#xff0c;开始倒计时&#xff0c;倒计时结束后设备断电&#xff0c;资金到账商家的商家助手里面&#xff0c;腾讯会收取千分之6手续费。 产品主要应用场景 本产品主要应用于各类无人值守或者自助…

vmware安装centos8(三、centos的安装)

注意&#xff1a; 存放安装镜像文件的磁盘必须至少有128G的空间 1、在主界面左侧的客户机列表中选择”CentOS8“&#xff0c;在右侧选项卡中点击“开启此虚拟机”。 2、此对话框直接点击“确定” 3、当看到以下界面时&#xff0c;在虚机中中点击鼠标&#xff0c;使虚拟机捕获…

数据结构基本概念-Java常用算法

数据结构基本概念-Java常用算法 1、数据结构基本概念2、数据逻辑结构3、算法时间复杂度 1、数据结构基本概念 数据&#xff08;Data&#xff09;&#xff1a;数据是信息的载体&#xff0c;其能够被计算机识别、存储和加工处理&#xff0c;是计算机程序加工的“原材料”。数据元…

洛谷题目题解详细解答

洛谷是一个很不错的刷题软件&#xff0c;可是找不到合适的题解是个大麻烦&#xff0c;大家有啥可以私信问我&#xff0c;以下是我已经通过的题目。 你如果有哪一题不会&#xff08;最好是我通过过的&#xff0c;我没过的也没关系&#xff09;&#xff0c;可以私信我&#xff0…

数据结构和算法——数据结构

数据结构&#xff1a; 线性结构&#xff1a; 顺序存储方式&#xff0c;顺序表 常见的顺序存储结构有&#xff1a;数组、队列、链表、栈 链式存储方式&#xff0c;链表 队列&#xff1a; 队列可以使用数组结构或者链表结构来存储&#xff0c;先入先出&#xff0c;后进后出。…

jira 浏览器插件在问题列表页快速编辑问题标题

jira-issueTable-quicker 这是一个可以帮助我们在问题表格页快速编辑问题的浏览器插件 github 地址 功能介绍 jira 不可否认是一个可以帮助有效提高工作效率的工具&#xff0c;但是我们在使用 jira 时使用问题表格可以让我们看到跟多的内容而不用关注细节&#xff0c;但是目…

Rabbitmq安装-docker版

1.简介 2.安装消息队列 下载地址https://www.rabbitmq.com/download.html 使用docker方式安装 需要先下载docker&#xff0c;参考文章https://blog.csdn.net/weixin_43917045/article/details/104747341?csdn_share_tail%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22arti…

微服务技术栈-初识Docker

文章目录 前言一、Docker概念二、安装Docker三、Docker服务命令四、Docker镜像和容器Docker镜像相关命令Docker容器相关命令 总结 前言 docker技术风靡全球&#xff0c;它的功能就是将linux容器中的应用代码打包,可以轻松的在服务器之间进行迁移。docker运行程序的过程就是去仓…

MySQL:温备份和恢复-mysqldump (4)

介绍 温备&#xff1a;同样是在数据库运行的时候进行备份的&#xff0c;但对当前数据库的操作会产生影响。&#xff08;只可以读操作&#xff0c;不可以写操作&#xff09; 温备份的优点&#xff1a; 1.可在表空间或数据文件级备份&#xff0c;备份时间短。 2.备份时数据库依然…

软件设计师_数据结构与算法_学习笔记

文章目录 6.1 数组与矩阵6.1.1 数组6.1.2 稀疏矩阵 6.2 线性表6.2.1 数据结构的定义6.2.2 顺序表与链表6.2.2.1 定义6.2.2.2 链表的操作 6.2.3 顺序存储和链式存储的对比6.2.4 队列、循环队列、栈6.2.4.2 循环队列队空与队满条件6.2.4.3 出入后不可能出现的序列练习 6.2.5 串 6…