打卡第二十五天:递增子序列、全排列、全排列II、重新安排行程、N皇后、解数独

1、递增子序列

题目

文章

视频

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。在子集一题中通过排序,再加一个标记数组来达到去重的目的。而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!

用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

491. 递增子序列1

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
  • 终止条件

可以不加终止条件,startIndex每次都会加1,并不会无限递归。但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

491. 递增子序列1

 在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();
}

unordered_set<int> uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

// 版本一
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,要取树上的节点}unordered_set<int> uset; // 使用set对本层元素进行去重for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

优化

unordered_set<int>来记录本层元素是否重复使用。其实用数组来做哈希,效率就高了很多。注意题目中说了,数值范围[-100,100],所以完全可以用数组来做哈希。

程序运行的时候对unordered_set 频繁的insert,unordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。

那么优化后的代码如下:

// 版本二
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);}int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| used[nums[i] + 100] == 1) {continue;}used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

2、全排列

题目

文章

视频

以[1,2,3]为例,抽象成树形结构如下:

46.全排列

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.size()) {result.push_back(path);return;
}
  • 单层搜索的逻辑

for循环里不用startIndex了。因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
}

整体:

class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};

  • 时间复杂度: O(n!)
  • 空间复杂度: O(n)

3、全排列II

题目

文章

视频

这道题目和上一题的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。这里又涉及到去重了。还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素
  • 时间复杂度: O(n! * n)
  • 空间复杂度: O(n)

去重的代码中,这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

和这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;
}

都是可以的

既然 used[i - 1] == false也行而used[i - 1] == true也行,那为什么还要写这个条件呢?直接这样写 不就完事了?

if (i > 0 && nums[i] == nums[i - 1]) {continue;
}

其实并不行,一定要加上 used[i - 1] == false或者used[i - 1] == true,因为 used[i - 1] 要一直是 true 或者一直是false 才可以,而不是 一会是true 一会又是false。 所以这个条件要写上。

4、重新安排行程(困难)

题目

文章

直觉上来看 这道题和回溯法没有什么关系,更像是图论中的深度优先搜索。实际上确实是深搜,但这是深搜中使用了回溯的例子,在查找路径的时候,如果不回溯,怎么能查到目标路径呢。

这道题目有几个难点:

  1. 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  2. 有多种解法,字母序靠前排在前面,如何该记录映射关系呢 ?
  3. 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
  4. 搜索的过程中,如何遍历一个机场所对应的所有机场。

如何理解死循环

例子:

332.重新安排行程

出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。

记录映射关系

一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map,如果让多个机场之间再有顺序的话,就是用std::map 或者std::multimap 或者 std::multiset。

这样存放映射关系可以定义为 unordered_map<string, multiset<string>> targets 或者 unordered_map<string, map<string, int>> targets

含义如下:

unordered_map<string, multiset> targets:unordered_map<出发机场, 到达机场的集合> targets

unordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets

这两个结构可选择后者,因为如果使用unordered_map<string, multiset<string>> targets 遍历multiset的时候,不能删除元素,一旦删除元素,迭代器就失效了。增删元素是因为出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会死循环。

所以搜索的过程中就是要不断的删multiset里的元素,那么推荐使用unordered_map<string, map<string, int>> targets

在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。相当于不删就做一个标记

回溯法

本题以输入:[["JFK", "KUL"], ["JFK", "NRT"], ["NRT", "JFK"]为例,抽象为树形结构如下:

332.重新安排行程1

  • 递归函数参数

使用unordered_map<string, map<string, int>> targets; 来记录航班的映射关系,定义为全局变量。参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。

代码如下:

// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {

注意函数返回值bool!

我们之前讲解回溯算法的时候,一般函数返回值都是void,这次为什么是bool呢?

因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线,如图:

332.重新安排行程1

所以找到了这个叶子节点了直接返回。当然本题的targets和result都需要初始化,代码如下:

for (const vector<string>& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
  • 递归终止条件

拿题目中的示例为例,输入: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。

所以终止条件是:回溯遍历的过程中遇到的机场个数如果达到了(航班数量+1),那么就找到了一个行程把所有航班串在一起了。

代码如下:

if (result.size() == ticketNum + 1) {return true;
}
  • 单层搜索的逻辑

在选择映射函数的时候,不能选择unordered_map<string, multiset<string>> targets, 因为一旦有元素增删multiset的迭代器就会失效。可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效

所以unordered_map<string, map<string, int>> targets 来做机场之间的映射。

遍历过程如下:

for (pair<const string, int>& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}
}

可以看出 通过unordered_map<string, map<string, int>> targets里的int字段来判断 这个集合里的机场是否使用过,这样避免了直接去删元素。

完整

class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {if (result.size() == ticketNum + 1) {return true;}for (pair<const string, int>& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}}return false;
}
public:vector<string> findItinerary(vector<vector<string>>& tickets) {targets.clear();vector<string> result;for (const vector<string>& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系}result.push_back("JFK"); // 起始机场backtracking(tickets.size(), result);return result;}
};

代码中

for (pair<const string, int>& target : targets[result[result.size() - 1]])

一定要加上引用即 & target,因为后面有对 target.second 做减减操作,如果没有引用,单纯复制,这个结果就没记录下来,那最后的结果就不对了。加上引用之后,就必须在 string 前面加上 const,因为map中的key 是不可修改了,这就是语法规定了。

5、N皇后(困难)

题目

文章

视频

约束条件:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线

究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面我用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:

51.N皇后

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

  • 定义全局变量二维数组result来记录最终结果。

参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:

vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件

在如下树形结构中: 

51.N皇后

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:

if (row == n) {result.push_back(chessboard);return;
}

  • 单层搜索的逻辑

递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:

for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}
}

  • 验证棋盘是否合法

按照如下标准去重:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线 (45度和135度角)

代码如下:

bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}

在这份代码中,为什么没有在同行进行检查呢?因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {if (row == n) {result.push_back(chessboard);return;}for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}}
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}
public:vector<vector<string>> solveNQueens(int n) {result.clear();std::vector<std::string> chessboard(n, std::string(n, '.'));backtracking(n, 0, chessboard);return result;}
};

  • 时间复杂度: O(n!)
  • 空间复杂度: O(n)

棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了

6、解数独(困难)

题目

文章

视频

棋盘搜索问题可以使用回溯法暴力搜索,这次要做的是二维递归

N皇后是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深

因为这个树形结构太大了,抽取一部分如图所示:

37.解数独

  • 递归函数以及参数

递归函数的返回值bool因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。

代码如下:

bool backtracking(vector<vector<char>>& board)

  • 递归终止条件

本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。

不用终止条件会不会死循环?递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

  • 递归单层搜索逻辑

37.解数独

在树形图中可以看出需要一个二维的递归 (一行一列)

一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性

代码如下:(详细看注释

bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] != '.') continue;for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;                           // 9个数都试完了,都不行,那么就返回false}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}

注意这里return false的地方。因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解。那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去

判断棋盘是否合法

判断棋盘是否合法有如下三个维度:

  • 同行是否重复
  • 同列是否重复
  • 9宫格里是否重复

代码如下:

bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}

最后整体:

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] == '.') {for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;  // 9个数都试完了,都不行,那么就返回false}}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}
public:void solveSudoku(vector<vector<char>>& board) {backtracking(board);}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1489580.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

LLM 应用可观测性:从 Trace 视角展开的探索与实践之旅

作者&#xff1a;坤硕 背景介绍 随着生成式 AI 概念的火爆&#xff0c;以 ChatGPT 为代表&#xff0c;市场上涌现了一系列商用或者开源的大模型&#xff0c;同时基于大语言模型以及 AI 生态技术栈构建的应用以及业务场景也越来越多&#xff0c;大规模的模型训练以及模型推理场…

python—pandas基础(1)

文章目录 安装设定系统环境Pandas的主要数据结构Series对象创建使用列表创建属性values和index指定index使用list列表指定index传入字典创建&#xff0c;默认将key作为index将一个标量与index对象一起传入创建 DataFrame对象创建创建DataFrame对象values index columns属性列表…

如何查看cpu架构,查看CPU架构的方法

查看CPU架构的方法有很多&#xff0c;具体取决于你使用的操作系统。以下是一些常见的操作系统中查看CPU架构的方法&#xff1a; Windows查看CPU架构的方法 使用系统信息工具 按 Win R 打开运行窗口。输入 msinfo32 并按 Enter。在系统信息窗口中&#xff0c;找到“处理器”一…

WebGoC题解(14) 151.(2017dloi小乙)第5题 巧克力甜度(sweet)

题目描述 妈妈买了n颗甜度不同的巧克力&#xff0c;规定小C只能吃最大甜度之和是S。 例如&#xff1a;有5颗巧克力&#xff0c;s6&#xff0c;每个的甜度分别为&#xff1a; 4 2 3 1 1&#xff0c;那么小C最多可以吃3颗。 请问你能帮小C计算一下最多能吃多少颗巧克力吗? 输入格…

谁说只有车载HMI界面?现在工业类的HMI界面UI也崛起了

谁说只有车载HMI界面&#xff1f;现在工业类的HMI界面UI也崛起了 引言 艾斯视觉作为行业ui设计和前端开发领域的从业者&#xff0c;其观点始终认为&#xff1a;工业自动化和智能化水平不断提高&#xff0c;人机界面&#xff08;Human-Machine Interface&#xff0c;简称HMI&a…

普中51单片机:蜂鸣器的简单使用(十一)

文章目录 引言蜂鸣器的分类工作原理无源蜂鸣器压电式蜂鸣器&#xff1a;电磁式蜂鸣器&#xff1a; 电路符号及应用代码演示——无源蜂鸣器 引言 蜂鸣器是一种常见的电子音响器件&#xff0c;广泛应用于各种电子产品中。它们能够发出不同频率的声音&#xff0c;用于警报、提醒、…

Multi Range Read与Covering Index是如何优化回表的?

上篇文章末尾我们提出一个问题&#xff1a;有没有什么办法可以尽量避免回表或让回表的开销变小呢&#xff1f; 本篇文章围绕这个问题提出解决方案&#xff0c;一起来看看MySQL是如何优化的 回表 为什么会发生回表&#xff1f; 因为使用的索引并没有整条记录的所有信息&…

Mysql索引解析

索引 1.创建索引的SQL ALTER TABLE tbl_name ADD PRIMARY KEY (col_list); // 该语句添加一个主键&#xff0c;这意味着索引值必须是唯一的&#xff0c;且不能为NULL。ALTER TABLE tbl_name ADD UNIQUE index_name (col_list); // 这条语句创建索引的值必须是唯一的。ALTER T…

加入到「圆心学堂」知识星球后,你将获得些什么呢?

大家好呀&#xff0c;我的知识星球上线啦&#xff01;加入到「圆心学堂」知识星球后&#xff0c;您将获得些什么呢&#xff1f; 1.共50套原创精品图文教程电子书&#xff0c;包含1000篇文章&#xff0c;涵盖主流框架、中间件、分布式和微服务等领域&#xff0c;紧跟行业趋势&a…

怎么培养政府机关的公文写作能力?

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频百万播放量 公文写作千万不能零起步&#xff0c;你有时间慢慢学习&#xff0c;但领导哪有时间等你慢慢进步啊。 如果问写公文有什么捷径&#xff0c;那就不得不靠「AI写作工具…

XLua 原理分析 三

前面已经介绍了Lua与C#的基础通信原理&#xff0c;和Wrap中间文件的作用。有了前面2篇的基础&#xff0c;大概已经能搞清这块的原理。 为了加深对这块的印象&#xff0c;这里开始正式分析Xlua中的Lua和C#的通信。 一、Lua如何调用CS的过程 lua的初始化代码&#xff1a; pri…

python基础巩固

基本数据类型 可以用isinstance来判断 a111 isinstance(a,int) True数值运算&#xff1a; >>> 2 / 4 # 除法&#xff0c;得到一个浮点数 0.5 >>> 2 // 4 # 除法&#xff0c;得到一个整数 0 >>> 17 % 3 # 取余 2Python 字符串不能被改变。向一个…

vuex学习day02-state状态、严格模式(strict)、mutations、辅助函数mapMutations、actions

4、state状态 &#xff08;1&#xff09;作用&#xff1a;提供共享数据 &#xff08;2&#xff09;步骤&#xff1a; 1&#xff09;找到仓库&#xff0c;通过state提供共享数据 报错1&#xff1f;&#xff1a; 解决方式&#xff1a; 找到.eslintrc.js文件&#xff0c;添加一…

LabVIEW操作系列1

系列文章目录 我的记录&#xff1a; LabVIEW操作系列 文章目录 系列文章目录前言五、特殊用法5.1 取值范围表示5.2 对输入值取值范围进行限定5.3 控制多个While循环停止运行。5.4 获取按钮上的文本5.5 获取按钮上的文本【进阶】 六、使用步骤1.引入库2.读入数据 七、其余功能7.…

python+barcode快速生成条形码3-PyQt6微界面(电商条形码生成工具)

背景 继续上一片文章的电商测试小工具&#xff0c;进行了优化 需求 生成条形码之后&#xff0c;可以通过界面方式读取条形码的图片 支持当个条形码快速生成&#xff0c;以及批量导入 csv文件导入 添加微界面图像按钮&#xff0c;方便操作&#xff0c;更像是在实现测试工具的…

AI在Facebook的应用:预见智能化社交的新前景

在数字化时代&#xff0c;社交媒体平台已成为我们生活的重要组成部分&#xff0c;而人工智能&#xff08;AI&#xff09;的快速发展正推动着这些平台向更智能、更个性化的方向发展。Facebook&#xff0c;作为全球最大的社交网络平台之一&#xff0c;正不断探索和应用AI技术&…

基于JAVA+SpringBoot+Vue的oa系统

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、SpringCloud、Layui、Echarts图表、Nodejs、爬…

x64dbg反汇编技术入门学习笔记

EIP EIP是程序下一次要运行地方 寄存器 临时存放数据,按照Intel规定去存放 window API 微软提供的&#xff0c;用户可以操作系统的一些接口&#xff0c;以函数的形式体现 杀软是如何查杀恶意的 镜像地址 实际地址 实际运行后代码的地址 查外部调用段就可以定位到.rdat…

Android Kotlin:协程

目录&#xff1a; 1&#xff09;协程是什么&#xff1f; 2&#xff09;协程和线程的关系&#xff1f; 3&#xff09;协程如何使用&#xff1f;切线程是什么 4&#xff09;挂起函数是什么&#xff1f; 5&#xff09;withContext和lanuch的区别在哪里&#xff1f; 6&#xff09;…

Jenkins的相关概述和安装

Jenkins 1.什么是jenkins Jenkins是一个开源软件项目&#xff0c;是基于Java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件项目可以进行持续集成。耗内存max 2. 为什么使用Jenkins 拉取、编译、打包…