一文搞懂深度信念网络!DBN概念介绍与Pytorch实战

前言

本文深入探讨了深度信念网络DBN的核心概念、结构、Pytorch实战,分析其在深度学习网络中的定位、潜力与应用场景。

在这里插入图片描述

一、概述

1.1 深度信念网络的概述

深度信念网络(Deep Belief Networks, DBNs)是一种深度学习模型,代表了一种重要的技术创新,具有几个关键特点和突出能力。

首先,DBNs是由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBMs)堆叠而成的生成模型。这种多层结构使得DBNs能够捕获数据中的高层次抽象特征,对于复杂的数据结构具有强大的表征能力。

其次,DBNs采用无监督预训练的方式逐层训练模型。与传统的深度学习模型不同,这种逐层学习策略使DBNs在训练时更为稳定和高效,尤其适合处理高维数据和未标记数据。

此外,DBNs具有出色的生成学习能力。它不仅可以学习和理解数据的分布,还能够基于学习到的模型生成新的数据样本。这种生成能力在图像合成、文本生成等任务上有着广泛的应用前景。

最后,DBNs的训练和优化涉及到一些先进的算法和技术,如对比散度(Contrastive Divergence, CD)算法等。这些算法的应用和改进,使DBNs在许多实际问题上表现卓越,但同时也带来了一些挑战,如参数调优的复杂性等。

总的来说,深度信念网络通过其独特的结构和生成学习的能力,展示了深度学习的新方向和潜力。它的关键技术创新和突出能力使其在诸多领域成为一种有力的工具,为人工智能的发展和应用提供了新的机遇。

1.2 深度信念网络与其他深度学习模型的比较

深度信念网络(DBNs)作为深度学习领域的一种重要模型,与其他深度学习模型有着许多共同点,但也有着鲜明的特色。以下我们从不同的角度来比较DBNs与其他主要深度学习模型。

结构层次
  • DBNs: 由多层受限玻尔兹曼机堆叠而成,每一层都对上一层的表示进行进一步抽象。采用无监督预训练,逐层构建复杂模型。
  • 卷积神经网络(CNNs): 采用卷积层、池化层等特殊结构,适合空间数据如图像。
  • 循环神经网络(RNNs): 通过时间递归结构,适合处理序列数据如文本。
学习方式
  • DBNs: 具有生成学习能力,可以生成新的数据样本,适用于无监督学习和半监督学习场景。
  • CNNs、RNNs: 主要进行判别学习,通过监督学习进行分类或回归等任务。
训练和优化
  • DBNs: 使用对比散度等复杂优化算法,参数调优相对困难。
  • CNNs、RNNs: 可以使用梯度下降等常见优化方法,训练过程相对更为直观和容易。
应用领域
  • DBNs: 由于其生成学习和多层结构特性,特别适合处理高维数据、缺失数据等复杂场景。
  • CNNs: 在图像处理领域有着广泛的应用。
  • RNNs: 在自然语言处理和时间序列分析等领域有优势。

1.3 应用领域

深度信念网络(DBNs)作为一种强大的深度学习模型,已广泛应用于多个领域。其能够捕捉复杂数据结构的特性,让DBNs在以下应用领域中表现出卓越的能力。

图像识别与处理

DBNs可以用于图像分类、物体检测和人脸识别等任务。其深层结构可以捕获图像中的复杂特征,比如纹理、形状和颜色等。在医学图像分析方面,DBNs也展现出强大的潜力,如用于疾病检测和组织分割等。

自然语言处理

通过与其他神经网络结构的组合,DBNs可以处理文本分类、情感分析和机器翻译等任务。其能够理解和生成语言的能力为处理复杂文本提供了强有力的工具。

推荐系统

DBNs的生成模型特性使其在推荐系统中也有广泛应用。通过学习用户和物品之间的潜在关系,DBNs能够生成个性化的推荐列表,从而提高推荐的准确性和用户满意度。

语音识别

在语音识别领域,DBNs可以用于提取声音信号的特征,并结合其他模型如隐马尔可夫模型(HMM)进行语音识别。其在复杂声音环境下的鲁棒性使其在这一领域有着显著优势。

无监督学习与异常检测

DBNs的无监督学习能力也使其在无监督聚类和异常检测等任务上表现出色。特别是在数据标签缺失或稀缺的场景下,DBNs可以提取有用的信息,用于发现数据中的潜在结构或异常模式。

药物发现与生物信息学

在药物发现和生物信息学方面,DBNs可以用于预测药物的生物活性、发现新的药物靶点等。其对高维数据的处理能力为解析复杂生物系统提供了有效手段。

二、结构

2.1 受限玻尔兹曼机(RBM)

file

受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)是深度信念网络的基本构建块。以下将详细介绍RBM的关键组成、工作原理和学习算法。

结构与组成

RBM是一种生成随机神经网络,由两层完全连接的神经元组成:可见层和隐藏层。

  • 可见层(Visible Layer): 包括对数据直接进行编码的神经元。
  • 隐藏层(Hidden Layer): 包括从可见层学习特征的神经元。

RBM中的连接是无向的,即连接是对称的。同一层中的神经元之间没有连接。

工作原理

RBM的工作原理基于能量函数,该函数定义了网络状态的能量。

  • 能量函数: RBM通过一个称为能量函数的数学公式来表示不同状态之间的关系。
  • 联合概率分布: RBM的能量与其状态的联合概率分布有关,其中较低的能量对应较高的概率。
学习算法

RBM的学习算法包括以下主要步骤:

  1. 前向传播: 从可见层到隐藏层的激活。
  2. 后向传播: 从隐藏层到可见层的重构。
  3. 梯度计算: 通过对比散度(Contrastive Divergence, CD)计算权重更新的梯度。
  4. 权重更新: 通过学习率更新权重。
应用

RBM被广泛用于特征学习、降维、分类等任务。作为深度信念网络的基本组成部分,RBM的应用也直接扩展到更复杂的数据建模任务中。

2.2 DBN的结构和组成

在这里插入图片描述

深度信念网络(Deep Belief Network,DBN)是一种深度学习模型,可以捕捉数据中的复杂层次结构。下面详细介绍DBN的结构和组成部分。

层次结构

在这里插入图片描述

DBN的结构由多个层组成,通常包括多个受限玻尔兹曼机(RBM)层和一个顶层。每一层由一组神经元组成,通过双向连接与相邻层的神经元相连。

  • 输入层: 对应数据的可见表示。
  • 隐藏层: 包括多个RBM层,每一层对应数据的更高层次抽象。
  • 顶层: 通常由一个RBM或其他模型组成,负责最终特征的提取和表示。
网络连接

在这里插入图片描述

DBN的连接结构遵循以下规则:

  • 同一层的神经元之间没有连接。
  • 每一层的神经元与上下层的所有神经元都有连接。
  • 连接是无向的(对于前几层的RBM)或有向的(对于顶层)。
训练过程

在这里插入图片描述

DBN的训练过程分为两个主要阶段:

  1. 预训练阶段: 每个RBM层按照从底到顶的顺序进行贪婪逐层训练。
  2. 微调阶段: 使用监督学习方法(如反向传播)对整个网络进行微调。
应用领域

DBN的结构和训练策略使其适用于许多复杂的建模任务,包括:

  • 特征学习: 学习输入数据的多层次抽象表示。
  • 分类: 基于学习的特征执行分类任务。
  • 生成建模: 生成与训练数据相似的新样本。

2.3 训练和学习算法

深度信念网络的训练是一个复杂且重要的过程。这一节将详细介绍DBN的训练和学习算法。

预训练

预训练是DBN训练的第一阶段,主要目的是初始化网络权重。

  • 逐层训练: DBN的每个RBM层单独训练,自底向上逐层进行。
  • 无监督学习: 使用无监督学习算法(如对比散度)训练RBM。
  • 生成权重: 每一层训练后,其权重用于下一层的输入。
微调

微调是DBN训练的第二阶段,调整预训练后的权重以改善性能。

  • 反向传播算法: 通常使用反向传播算法进行监督学习。
  • 误差最小化: 微调过程旨在通过调整权重最小化训练数据的预测误差。
  • 早停法: 通过在验证集上监控性能来防止过拟合。
优化方法

深度信念网络的训练通常涉及许多优化技术。

  • 学习率调整: 动态调整学习率可以加速训练并提高性能。
  • 正则化: 如L1和L2正则化有助于防止过拟合。
  • 动量优化: 动量可以帮助优化算法更快地收敛到最优解。
评估和验证

训练过程还包括对模型的评估和验证。

  • 交叉验证: 使用交叉验证来评估模型的泛化能力。
  • 性能指标: 使用如准确率、召回率等指标来评估模型性能。

三、实战

3.1 DBN模型的构建

深度信念网络是一种由多个受限玻尔兹曼机(RBM)层堆叠而成的生成模型。下面是构建DBN模型的具体步骤。

定义RBM层

RBM是DBN的基本构建块。它包括可见层和隐藏层,并通过权重矩阵连接。

class RBM(nn.Module):def __init__(self, visible_units, hidden_units):super(RBM, self).__init__()self.W = nn.Parameter(torch.randn(hidden_units, visible_units) * 0.1)self.h_bias = nn.Parameter(torch.zeros(hidden_units))self.v_bias = nn.Parameter(torch.zeros(visible_units))def forward(self, v):# 定义前向传播# 省略其他代码...
  • 权重初始化: 权重矩阵的初始化非常重要,通常使用较小的随机值。
  • 偏置项: 可见层和隐藏层都有偏置项,通常初始化为零。
构建DBN模型

DBN模型由多个RBM层组成,每一层的隐藏单元与下一层的可见单元相连。

class DBN(nn.Module):def __init__(self, layers):super(DBN, self).__init__()self.rbms = nn.ModuleList([RBM(layers[i], layers[i + 1]) for i in range(len(layers) - 1)])def forward(self, v):h = vfor rbm in self.rbms:h = rbm(h)return h
  • 逐层连接: 每个RBM层的输出成为下一个RBM层的输入。
  • 模块列表: 使用nn.ModuleList来存储RBM层,确保它们都被正确注册。
定义DBN的超参数

DBN的构建也涉及到选择合适的超参数,例如每个RBM层的可见和隐藏单元的数量。

# 定义DBN的层大小
layers = [784, 500, 200, 100]# 创建DBN模型
dbn = DBN(layers)

3.2 预训练

预训练是DBN训练过程中的一个关键阶段,通过逐层训练RBM来完成。以下是具体的预训练步骤。

RBM的逐层训练

DBN的每个RBM层都分别进行训练。训练一个RBM层的目的是找到可以重构输入数据的权重。

# 预训练每个RBM层
for index, rbm in enumerate(dbn.rbms):for epoch in range(epochs):# 使用对比散度训练RBM# 省略具体代码...print(f"RBM {index} trained.")
  • 逐层训练: 每个RBM层都独立训练,并使用上一层的输出作为下一层的输入。
对比散度(CD)算法

对比散度是训练RBM的常用方法。它通过对可见层和隐藏层的样本进行采样来更新权重。

# 对比散度训练
def contrastive_divergence(rbm, data, learning_rate):v0 = datah0_prob, h0_sample = rbm.sample_h(v0)v1_prob, _ = rbm.sample_v(h0_sample)h1_prob, _ = rbm.sample_h(v1_prob)positive_grad = torch.matmul(h0_prob.T, v0)negative_grad = torch.matmul(h1_prob.T, v1_prob)rbm.W += learning_rate * (positive_grad - negative_grad) / data.size(0)rbm.v_bias += learning_rate * torch.mean(v0 - v1_prob, dim=0)rbm.h_bias += learning_rate * torch.mean(h0_prob - h1_prob, dim=0)
  • 正相位和负相位: 正相位与数据分布有关,而负相位与模型分布有关。
  • 梯度更新: 权重更新基于正相位和负相位之间的差异。

3.3 微调

微调阶段是DBN训练流程中的最后部分,其目的是对网络进行精细调整以优化特定任务的性能。

监督训练

在微调阶段,DBN与一个或多个额外的监督层(例如全连接层)结合,以便进行有监督的训练。

# 在DBN上添加监督层
class SupervisedDBN(nn.Module):def __init__(self, dbn, output_size):super(SupervisedDBN, self).__init__()self.dbn = dbnself.classifier = nn.Linear(dbn.rbms[-1].hidden_units, output_size)def forward(self, x):h = self.dbn(x)return self.classifier(h)
  • 额外的监督层: 可以添加全连接层进行分类或回归任务。
微调训练

微调训练使用标准的反向传播算法,并可以采用任何常见的优化器和损失函数。

# 定义优化器和损失函数
optimizer = torch.optim.Adam(supervised_dbn.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()# 微调训练
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = supervised_dbn(data)loss = criterion(output, target)loss.backward()optimizer.step()
  • 优化器: 如Adam或SGD等。
  • 损失函数: 取决于任务,例如交叉熵损失用于分类任务。
模型验证和测试

微调阶段还涉及在验证和测试数据集上评估模型的性能。

# 模型验证和测试
def evaluate(model, data_loader):correct = 0with torch.no_grad():for data, target in data_loader:output = model(data)pred = output.argmax(dim=1)correct += (pred == target).sum().item()accuracy = correct / len(data_loader.dataset)return accuracy

3.4 应用

分类或回归任务

例如,DBN可用于图像分类、股价预测等。

特征学习

DBN可用于无监督的特征学习,以捕捉输入数据的有用表示。

转移学习

训练有素的DBN可以用作预训练的特征提取器,以便在相关任务上进行迁移学习。

在线应用

DBN可以集成到在线系统中,实时进行预测。

# 实时预测示例
def real_time_prediction(model, new_data):with torch.no_grad():prediction = model(new_data)return prediction

四、总结

深度信念网络(DBN)作为一种强大的生成模型,近年来在许多机器学习和深度学习任务中取得了成功。在这篇文章中,我们详细探讨了DBN的基础结构、训练过程以及评估和应用。以下是一些关键要点的总结:

  1. 结构和组成: DBN是由多个受限玻尔兹曼机(RBM)堆叠而成的,每个RBM层负责捕获数据的特定特征。

  2. 训练和学习算法: 训练过程包括预训练和微调两个阶段。预训练负责初始化权重,而微调则使用监督学习来优化模型的特定任务性能。

  3. 应用: 分类、回归、特征学习、转移学习等。

  4. 工具和实现: 使用PyTorch等深度学习框架,可以方便地实现DBN。文章提供了清晰的代码示例,帮助读者理解并实现这一复杂的模型。

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1487951.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Ruoyi-WMS部署

所需软件 1、JDK:8 安装包:https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.htmlopen in new window 安装文档:https://cloud.tencent.com/developer/article/1698454open in new window 2、Redis 3.0 安装包&a…

跨域浏览器解决前端跨域问题

1.问题背景 这是一种属于非主流的解决跨域的方案,但是也是可以正常使用而且比较简单的。如果需要使用主流的解决前端跨域方案,请参考这篇文章。 我这边其实是优先建议大家使用主流的跨域方案,如果主流的实在不行,那么就使用跨域…

redis:清除缓存的最简单命令示例

清除redis缓存命令 1.打开cmd窗口,并cd进入redis所在目录 2.登录redis redis-cli 3.查询指定队列当前的记录数 llen 队列名称 4.清除指定队列所有记录 ltrim 队列名称 1 0 5.再次查询,确认队列的记录数是否已清除

用uniapp 及socket.io做一个简单聊天app 2

在这里只有群聊,二个好友聊天,可以认为是建了一个二人的群聊。 const express require(express); const http require(http); const socketIo require(socket.io); const cors require(cors); // 引入 cors 中间件const app express(); const serv…

探索算法系列 - 双指针

目录 移动零(原题链接) 复写零(原题链接) 快乐数(原题链接) 盛最多水的容器(原题链接) 有效三角形的个数(原题链接) 查找总价格为目标值的两个商品&…

科研绘图系列:R语言组合堆积图(stacked barplot with multiple groups)

介绍 通常堆积图的X轴表示样本,样本可能会存在较多的分组信息,通过组合堆积图和样本标签分组信息,我们可以得到一张能展示更多信息的可发表图形。 加载R包 knitr::opts_chunk$set(warning = F, message = F) library(tidyverse) library(cowplot) library(patchwork)导入…

GDAL访问HDFS集群中的数据

1.集群搭建 参考文章:hadoop2.10.0完全分布式集群搭建 HA(QJM)高可用集群搭建_hadoop 2.10 ha-CSDN博客 创建文件夹 hdfs dfs -mkdir -p hdfs://192.168.80.132:9000/test 开放权限 hdfs dfs -chmod -R 777 /test 上传文件 hadoop fs -put /home/wh/data/res…

JavaScript(16)——定时器-间歇函数

开启定时器 setInterval(函数,间隔时间) 作用:每隔一段时间调用这个函数,时间单位是毫秒 例如:每一秒打印一个hello setInterval(function () { document.write(hello ) }, 1000) 注:如果是具名函数的话不能加小括号&#xf…

【论文复现】Vision Transformer(ViT)

1. Transformer结构 1.1 编码器和解码器 翻译这个过程需要中间体。也就是说,编码,解码之间需要一个中介,英文先编码成一个意思,再解码成中文。 那么查字典这个过程就是编码和解码的体现。首先我们的大脑会把它编码,编…

数仓架构解析(第45天)

系列文章目录 经典数仓架构传统离线大数据架构 文章目录 系列文章目录烂橙子-终生成长社群群主,前言1. 经典数仓架构2. 传统离线大数据架构 烂橙子-终生成长社群群主, 采取邀约模式,不支持付费进入。 前言 经典数仓架构 传统离线大数据架…

2000-2023年上市公司融资约束指数FC指数(含原始数据+计算结果)

2000-2023年上市公司融资约束指数FC指数(含原始数据计算结果) 1、时间:2000-2023年 2、来源:上市公司年报 3、指标:证券代码、证券简称、统计截止日期、是否剔除ST或*ST或PT股、是否剔除上市不满一年、已经退市或被…

Linus: vim编辑器的使用,快捷键及配置等周边知识详解

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 vim的安装创建新用户 adduser 用户名Linus是个多用户的操作系统是否有创建用户的权限查看当前用户身份:whoami** 怎么创建设置密码passwdsudo提权(sudo输入的是用户…

前端网页打开PC端本地的应用程序实现方案

最近开发有一个需求,网页端有个入口需要跳转三维大屏,而这个大屏是一个exe应用程序。产品需要点击这个入口,并打开这个应用程序。这个就类似于百度网盘网页跳转到PC端应用程序中。 这里我们采用添加自定义协议的方式打开该应用程序。一开始可…

前端:Vue学习 - 购物车项目

前端:Vue学习 - 购物车项目 1. json-server,生成后端接口2. 购物车项目 - 实现效果3. 参考代码 - Vuex 1. json-server,生成后端接口 全局安装json-server,json-server官网为:json-server npm install json-server -…

vue3前端开发-小兔鲜项目-登录和非登录状态下的模板适配

vue3前端开发-小兔鲜项目-登录和非登录状态下的模板适配&#xff01;有了上次的内容铺垫&#xff0c;我们可以根据用户的token来判定&#xff0c;到底是显示什么内容了。 1&#xff1a;我们在对应的导航组件内修改完善一下内容即可。 <script setup> import { useUserSt…

深入理解TensorFlow底层架构

目录 深入理解TensorFlow底层架构 一、概述 二、TensorFlow核心概念 计算图 张量 三、TensorFlow架构组件 前端 后端 四、分布式计算 集群管理 并行计算 五、性能优化 内存管理 XLA编译 六、总结与展望 深入理解TensorFlow底层架构 一、概述 TensorFlow是一个开…

嵌入式C++、InfluxDB、Spark、MQTT协议、和Dash:树莓派集群物联网数据中心设计与实现(代码示例)

1. 项目概述 随着物联网技术的快速发展,如何高效地收集、存储和分析海量IoT设备数据成为一个重要课题。本文介绍了一个基于树莓派集群搭建的小型物联网数据中心,实现了从数据采集到分析可视化的完整流程。 该系统采用轻量级组件,适合资源受限的边缘计算环境。主要功能包括: …

分类常用的评价指标-二分类/多分类

二分类常用的性能度量指标 精确率、召回率、F1、TPR、FPR、AUC、PR曲线、ROC曲线、混淆矩阵 「精确率」查准率 PrecisionTP/(TPFP) 「召回率」查全率RecallTP/(TPFN) 「真正例率」即为正例被判断为正例的概率TPRTP/(TPFN) 「假正例率」即为反例被判断为正例的概率FPRFP/(TNFP)…

Java代码基础算法练习-数值求和-2024.07.25

任务描述&#xff1a; 现有一串字符(长度不超过255个字符)&#xff0c;需对其中的数值字符求和&#xff08;需转换成整型进行计算&#xff09;。 解决思路&#xff1a; 输入字符串&#xff0c;循环对每个字符否为数字&#xff0c;转换整型并求和 转换整型有以下的方式 1. su…

当 Nginx 出现请求的重复提交,如何处理?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01; 文章目录 当 Nginx 出现请求的重复提交&#xff0c;如何处理&#xff1f;一、理解请求重复提交的来龙去脉二、请求重复提交可能带来的麻烦三、解决方案之“一夫当关”——…