【iOS】——属性关键字

属性关键字的类型

在iOS中属性关键字分为四种类型:

  • 可访问性: readonly ,readwrite
  • 原子性 : atomic ,nonatomic
  • 内存管理 : retain/strong/copy, assign/unsafe_unretained,weak
  • 方法命名:setter,getter

1.可访问性

readonly:表示只读属性,只会生成getter方法 ,不会生成setter方法,无法通过 setter 方法进行修改。
readwrite:与 readonly 相对,表示读写属性,会生成getter和setter方法,可以通过 setter 方法修改属性值。

2.原子性

atomic:提供了一定程度的线程安全性,确保对属性的读取和写入操作是原子的,即在同一时间只有一个线程可以访问属性。这是通过给属性的访问器方法(getter 和 setter)加锁来实现的。
nonatomic:属性的访问是非原子的,不提供线程安全保护。在多线程环境下,多个线程同时访问和修改属性可能会导致数据不一致的情况。nonatomic 通常具有更高的性能,因为不需要额外的加锁和同步操作。

atomic只针对属性的 getter/setter 方法进行加锁,所以安全只是针对getter/setter方法来说,并不是整个线程安全,因为一个属性并不只有 setter/getter 方法,例:(如果一个线程正在getter 或者 setter时,有另外一个线程同时对该属性进行release操作,如果release先完成,会造成crash)

3.内存管理:

weak

用于表示对对象的弱引用,不会增加对象的引用计数。当所引用的对象被释放时,弱引用会自动置为 nil。

在ARC环境下,为避免循环引用,往往会把delegate属性用weak修饰;在MRC下使用assign修饰。当一个对象不再有strong类型的指针指向它的时候,它就会被释放,即使还有weak型指针指向它,那么这些weak型指针也将被清除。

assign

经常用于非指针变量,用于基础数据类型 (例如NSInteger)和C数据类型(int, float, double, char, 等),另外还有id类型。用于对基本数据类型进行复制操作,不更改引用计数。

也可以用来修饰对象,但是,被assign修饰的对象在释放后,指针的地址还是存在的,也就是说指针并没有被置为nil,成为野指针

之所以可以修饰基本数据类型,因为基本数据类型一般分配在栈上,栈的内存会由系统自动处理,不会造成野指针。MRC下的delegate往往assgin,此操作是为了deletage和self等自身产生循环引用。

weak 和 assign 的区别:

修饰的对象:weak修饰oc对象类型的数据,assign用来修饰是非指针变量。

引用计数:weak 和 assign 都不会增加引用计数。

释放:weak 修饰的对象释放后,指针地址自动设置为 nil,assign修饰的对象释放后指针地址依然存在,成为野指针。

修饰delegate 在MRC使用assign,在ARC使用weak。

strong

修饰一些OC对象类型的数据如:(NSNumber,NSString,NSArray、NSDate、NSDictionary、模型类等),strong是强引用,在ARC下等于retain,这一点区别于weak。

strong是我们通常所说的指针拷贝(浅拷贝),内存地址保持不变,只是产生了一个新的指针,新指针和引用对象的指针指向同一个内存地址,没有生成新的对象,多了一个指向该对象的指针。

由于使用的是一个内存地址,当该内存地址存储的内容发生变更的时候,会导致属性也跟着变更

copy

用于修饰OC对象类型的数据,在调用setter方法给成员变量赋值时,会将被赋值的对象生成一个副本,然后将该副本赋值给成员变量。

在MRC,用来修饰block,因为block需要从栈区copy到堆区,在ARC,系统自动给我们做了这个操作,所一现在使用strong或者copy来修饰block都是可以的。

copy和strong都是属于强引用,都会让属性的引用计数加一,但是copy和strong不同点在于,它所修饰的属性当引用一个属性值时,是内存拷贝(深拷贝),就是在引用是,会生成一个新的内存地址和指针地址,和引用对象完全没有相同点,因此它不会因为引用属性的变更而改变。

copy与strong的区别(深拷贝 浅拷贝):

copy:内存拷贝-深拷贝,内存地址不同,指针地址也不同。
storng: 指针拷贝-浅拷贝,内存地址不变,指针地址不同

声明两个copy属性,两个strong属性,分别为可变和不可变类型:

@property(nonatomic,strong)NSString * Strstrong;
@property(nonatomic,copy)NSString * Strcopy;
@property(nonatomic,copy)NSMutableString * MutableStrcopy;
@property(nonatomic,strong)NSMutableString * MutableStrstrong;`

用不可变对象对属性进行赋值:

```
NSString * OriginalStr = @"我已经开始测试了";
//对 不可变对象赋值 无论是 strong 还是 copy 都是原地址不变,生成一个新指针指向对象(浅拷贝)
self.Strcopy = OriginalStr;
self.Strstrong = OriginalStr;
self.MutableStrcopy = OriginalStr;
self.MutableStrstrong = OriginalStr;
NSLog(@"rangle=>%@\n normal:copy=>%@=====strong=>%@\nMutable:copy=>%@=====strong=>%@",OriginalStr,_Strcopy,_Strstrong,_MutableStrcopy,_MutableStrstrong);
NSLog(@"rangle=>%p\n normal:copy=>%p=====strong=>%p\nMutable:copy=>%p=====strong=>%p",OriginalStr,_Strcopy,_Strstrong,_MutableStrcopy,_MutableStrstrong);
NSLog(@"rangle=>%p\n normal:copy=>%p=====strong=>%p\nMutable:copy=>%p=====strong=>%p",&OriginalStr,&_Strcopy,&_Strstrong,&_MutableStrcopy,&_MutableStrstrong);
```

在这里插入图片描述

strong修饰的对象和copy修饰的对象都是在引用一个对象的时候,内存地址是一样的,只有指针地址不同。

所以对于不可变对象进行赋值,使用strong和copy关键字都是进行的浅拷贝,即对象内存地址不变,指针地址改变

用可变对象对属性进行赋值:

```
NSMutableString * OriginalMutableStr = [NSMutableString stringWithFormat:@"我已经开始测试了"];
self.Strcopy = OriginalMutableStr;
self.Strstrong = OriginalMutableStr;
self.MutableStrcopy = OriginalMutableStr;
self.MutableStrstrong = OriginalMutableStr;
```

在这里插入图片描述

strong修饰的属性内存地址依然没有改变,但是copy修饰的属性内存值产生了变化

对可变对象赋值 strong 是原地址不变,引用计数+1(浅拷贝)。 copy是生成一个新的地址和对象,生成一个新指针指向新的内存地址(深拷贝)

此时修改一下OriginalMutableStr的值,看看结果:

```
[OriginalMutableStr appendFormat:@"改变了"];
```

在这里插入图片描述

当改变原来的值后strong修饰的属性的内容也跟着改变了,而copy修饰的属性的内容没有发生改变。

由于OriginalMutableStr是可变类型,是在原有内存地址上进行修改,无论是指针地址和内存地址都没有被改变,只是当前内存地址所存放的数据进行改变。

由于 strong 修饰的属性虽然指针地址不同,但是指针是指向原内存地址的,所以会跟着 OriginalMutableStr 的改变而改变。

copy修饰的类型不仅指针地址不同,而且指向的内存地址也和OriginalMutableStr 不一样,所以不会跟着 OriginalMutableStr 的改变而改变。

使用self.Strcopy 和 _Strcopy 来赋值也是两个不一样的结果,因为后者没有调用 set 方法,而 copy 和 strong 之所以会产生差别就是因为在 set 方法中,copy修饰的属性: 调用了 _Strcopy = [Strcopy copy] 方法。

多种copy模式:copy 和 mutableCopy 对容器对象 进行操作

在对容器对象(NSArray)进行copy操作时,分为多种:

  • copy:仅仅进行了指针拷贝
  • mutableCopy:进行内容拷贝这里的单层指的是完成了NSArray对象的深copy,而未对其容器内对象进行处理使用(NSArray对象的内存地址不同,但是内部元素的内存地址不变)
    [array copy];[array  mutableCopy];
  • 双层深拷贝:这里的双层指的是完成了NSArray对象和NSArray容器内对象的深copy(为什么不是完全,是因为无法处理NSArray中还有一个NSArray这种情况)使用:
    [[NSArray alloc] initWithArray:arr copyItems:YES]
  • 完全深拷贝:完美的解决NSArray嵌套NSArray这种情形,可以使用归档、解档的方式可以使用:

        [NSKeyedUnarchiver unarchiveObjectWithData:[NSKeyedArchiver archivedDataWithRootObject:testArr]];

问题总结

  1. NSMutableArray用copy修饰会出现什么问题?

出现调用可变方法不可控问题,会导致程序崩溃。对于可变对象使用copy关键字会进行深拷贝,返回一个不可变的对象,对不可变的对象调用可变方法就会crash

2.copy关键字影响了对象的可变和不可变属性吗?

  • 可变对象(mutable)copy和mutableCopy都是深拷贝
  • 不可变对象(immutable)的copy是浅拷贝,mutableCopy是深拷贝

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1486909.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Next.js中构建完整的身份验证系统【翻译】

案例使用第三方库:NextAuth.js, Shadcn/ui, react-hook-form, and Zod等 prisma: is an open-source database toolkit. We will use it to store user credentials.next-auth: Authentication for Next.js.react-hook-form: a library that helps you validate fo…

Github Desktop 关于将本地文件夹设置为新仓库的 使用笔记

实际要达到的结果: 将UE5工程同步到Github,工程太大,我们只需要将必要的工程文件夹同步即可,缓存等一些不必要的文件夹则不需要同步 最终效果预览: 1. 将本地文件夹设置为新仓库 将本地文件夹作为仓库一般你是没有这个仓库的,所以你需要新建一个仓库 如果忽略某些不必要的文…

# OpenCV 图像预处理—形态学:膨胀、腐蚀、开运算、闭运算 原理详解

文章目录 形态学概念膨胀使用膨胀操作来修复裂痕示例代码关键解析: 腐蚀使用腐蚀操作消除噪点示例代码: 开运算—先腐蚀后膨胀闭运算—先膨胀后腐蚀 形态学概念 首先看这两张图片 一张图周围有大大小小的噪音和彩点,另一张图片中字母有间隙&…

go语言Gin框架的学习路线(十一)

目录 GORM的CRUD教程 更新操作 更新所有字段 更新指定字段 使用 Select 和 Omit 更新 无 Hooks 更新 批量更新 删除操作 删除记录 批量删除 软删除 物理删除 示例代码 GORM的CRUD教程 CRUD 是 "Create, Read, Update, Delete"(创建、查询、…

Google Cloud Platform数据工程简介

Google Cloud Platform数据工程简介 前言 云计算的出现为数据驱动型组织提供了采用成本效益高且可扩展的数据工程解决方案的机会。在云服务提供商中,Google Cloud Platform (GCP) 是近年来表现优异的领导者之一。GCP的增长被归因于其在企业和初创公司中的日益普及…

【TypeScript 一点点教程】

文章目录 一、开发环境搭建二、基本类型2.1 类型声明2.2 基本类型 三、编译3.1 tsc命令3.2 tsconfig.json3.2.1 基本配置项includeexcludeextendsfiles 3.2.2 compilerOptions编译器的配置项 四、面向对象4.1 类4.2 继承4.3 抽象类4.4 接口 一、开发环境搭建 下载Node.js《Nod…

【全国大学生电子设计竞赛】2023年B题

🥰🥰全国大学生电子设计大赛学习资料专栏已开启,限时免费,速速收藏~

IP数据报结构详解:从基础到进阶

目录 IP数据报的格式 IP数据报首部的固定部分 IP数据报首部的可变部分 实例分析:数据报的分片 生存时间(TTL)与协议 首部检验和 总结 在网络通信中,IP数据报是至关重要的基本单元。本文将带您深入了解IP数据报的格式及其各个…

Python酷库之旅-第三方库Pandas(041)

目录 一、用法精讲 136、pandas.Series.ne方法 136-1、语法 136-2、参数 136-3、功能 136-4、返回值 136-5、说明 136-6、用法 136-6-1、数据准备 136-6-2、代码示例 136-6-3、结果输出 137、pandas.Series.eq方法 137-1、语法 137-2、参数 137-3、功能 137-4、…

数据结构-C语言-排序(4)

代码位置: test-c-2024: 对C语言习题代码的练习 (gitee.com) 一、前言: 1.1-排序定义: 排序就是将一组杂乱无章的数据按照一定的规律(升序或降序)组织起来。(注:我们这里的排序采用的都为升序) 1.2-排…

如何借助生成式人工智能引领未来的科技狂潮

如何借助生成式人工智能引领未来的科技狂潮 1. 生成式AI的现状1.1 技术基础1.1.1 深度学习1.1.2 生成对抗网络(GANs)1.1.3 变分自编码器(VAEs) 1.2 主要应用1.2.1 语言模型1.2.2 图像生成1.2.3 音频与视频生成 2. 未来的发展趋势2…

Windows下帆软BI(finebi)单机部署移植(Tomcat)攻略

一、基础环境 操作系统:Windows 10 64bit 帆软BI 版本:V9.0/V10.0 HTTP工具:Tomcat 外置数据库:Oracle 11g 实验内容:将已经部署好的帆软BI从一台电脑移植到另一台电脑 二、前期准备 1、做好外置数据库移植&…

<数据集>苹果腐烂识别数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:978张 标注数量(xml文件个数):978 标注数量(txt文件个数):978 标注类别数:2 标注类别名称:[fresh_apple, rotten_apple] 序号类别名称图片数框数1fresh_apple520922…

2022 年中高职组“网络安全”赛项-海南省省竞赛任务书-1-B模块-B-4Web渗透测试

前言 本章节我将尝试操作B-4模块的渗透测试,搭建环境很难,还望大家点点赞多多支持! 任务概览 最后4、5、6有一定的难度。 环境要求 kali Linux192.168.41.2Web服务器(假设为PYsystem 2020 模拟平台)192.168.41.7交换…

日常开发记录分享——C#控件ToolTip实现分栏显示内容

文章目录 需求来源实现思路实施请看VCR等等别走,有优化 需求来源 需要在鼠标浮动到指定位置后提示出详细的信息,一开始使用的tooltip实现,但是里面的内容效果并不理想,需要有条理性,于是就想到能不能将展示的东西分列…

代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?

代理IP协议是一种网络代理技术,可以实现隐藏客户端IP地址、加速网站访问、过滤网络内容、访问内网资源等功能。常用的IP代理协议主要有Socks5代理、HTTP代理、HTTPS代理这三种。代理IP协议主要用于分组交换计算机通信网络的互联系统中使用,只负责数据的路…

Linux(CentOS)的“应用商城” —— yum

Linux(CentOS)的“应用商城” —— yum 关于 yum 和软件包Linux 系统(CentOS)的生态yum 相关操作yum 本地配置yum 安装 lrzsz.x86_64 关于 yum 和软件包 首先 yum 是软件下载安装管理的客户端,类似各种手机里的“应用…

面试场景题系列--(1)如果系统的 QPS 突然提升 10 倍该怎么设计?--xunznux

1. 如果系统的 QPS 突然提升 10 倍该怎么设计? 1.1 硬件的扩展微服务的拆分 如果所有的业务包括交易系统、会员信息、库存、商品等等都夹杂在一起,当流量一旦起来之后,单体架构的问题就暴露出来了,机器挂了所有的业务就全部无法…

【机器学习】Jupyter Notebook如何使用之基本步骤和进阶操作

引言 Jupyter Notebook 是一个交互式计算环境,它允许创建包含代码、文本和可视化内容的文档 文章目录 引言一、基本步骤1.1 启动 Jupyter Notebook1.2 使用 Jupyter Notebook 仪表板1.3 在笔记本中工作1.4 常用快捷键1.5 导出和分享笔记本 二、进阶用法2.1 组织笔…

“微软蓝屏”事件,给IT行业带来的宝贵经验和教训

“微软蓝屏”事件是指2024年7月19日发生的一次全球性技术故障,主要涉及微软视窗(Windows)操作系统及其相关应用和服务。 以下是对该事件的详细解析: 一、事件概述 发生时间:2024年7月19日事件影响:全球多个…