为什么样本方差(sample variance)的分母是 n-1?

样本均值与样本方差的定义

首先来看一下均值,方差,样本均值与样本方差的定义
总体均值的定义:
μ = 1 n ∑ i = 1 n X i \mu=\frac{1}{n}\sum_{i=1}^{n} X_i μ=n1i=1nXi
也就是将总体中所有的样本值加总除以个数,也可以叫做总体的数学期望或简称期望

总体方差的定义:
σ 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 \sigma ^2=\frac {1}{n}\sum_{i=1}^{n} (X_i-\mu)^2 σ2=n1i=1n(Xiμ)2
总体中全部样本各数值与总体均值差的平方和的平均数,用来衡量随机变量或一组数据离散程度的度量。

在实际应用中,我们一般是拿不到总体的均值与总体的方差,只能通过抽样得到的样本均值与样本方差来估计总体的均值与方差。于是我们就得到了样本均值和样本方差:
样本均值的定义
X ˉ = 1 n ∑ i = 1 n X i \bar {X}=\frac{1}{n}\sum_{i=1}^{n} X_i Xˉ=n1i=1nXi

样本方差的定义
S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar X)^2 S2=n11i=1n(XiXˉ)2

对比总体方差的公式,样本方差的公式的系数为什么变为了 1 n − 1 \frac{1}{n-1} n11

通俗理解-自由度

一个比较通俗的的理解就是自由度,可以理解为对应的独立信息量。样本均值和样本方差就是抽样后把所有的独立的信息量(这里的独立的信息量就是数值,包含了均值和方差的信息)平均得到,在计算样本方差时用 X ˉ \bar X Xˉ替代了总体均值 μ \mu μ,自由度减少了一个。

假设只采样了两个样本 X 1 , X 2 X_1,X_2 X1X2,这其中的信息量是多少呢?方差是计算样本之间的偏离程度,所以一个独立有效的信息量就是这个数值减去均值。在计算方差时分子有两项: ( X 1 − X ˉ ) 2 (X_1-\bar X)^2 (X1Xˉ)2 ( X 2 − X ˉ ) 2 (X_2-\bar X)^2 (X2Xˉ)2 . 要算第一个样本的偏离程度,毋庸置疑只能老老实实算 ( X 1 − X ˉ ) (X_1-\bar X) (X1Xˉ);但是,第二个样本呢?计算 ( X 2 − X ˉ ) (X_2-\bar X) (X2Xˉ) 吗?其实还有另外一种方法,因为 X ˉ = X 1 + X 2 2 \bar X=\frac{X_1+X_2}{2} Xˉ=2X1+X2 X 1 X_1 X1 X 2 X_2 X2 其实是对于 X ˉ \bar X Xˉ对称的。所以其实 ( X 2 − X ˉ ) = ( 2 X ˉ − X 1 − X ˉ ) = − ( X 1 − X ˉ ) (X_2-\bar X)=(2\bar X-X_1-\bar X)=-(X_1-\bar X) (X2Xˉ)=(2XˉX1Xˉ)=(X1Xˉ)。也就是我们在用样本均值 X ˉ \bar X Xˉ替代总体均值后,只要 X 1 X_1 X1确定了之后, X 2 X_2 X2是可以根据 X 1 X_1 X1推出来具体数值的,实际能够有效提供样本到 X ˉ \bar X Xˉ的偏移量的信息数只有一条 X 1 X_1 X1

我们对这种现象可以有一个表述:就是 ( X 2 − X ˉ ) (X_2-\bar X) (X2Xˉ) 是不自由的,因为从之前的式子可以推出它。当然,对称地,我们也可以说 ( X 1 − X ˉ ) (X_1-\bar X) (X1Xˉ)是不自由的。总之,这两个式子当中,只有一个是自由的,所以我们称这两个式子的自由度为 1.所以在两个样本求方差的时候要除1,应为实际应用到方差计算种的只有 ( X 1 − X ˉ ) (X_1-\bar X) (X1Xˉ)这一个有效信息。

同样,将样本数增加至三个,当有两个样本 X 1 , X 2 X_1,X_2 X1X2并且知道 X ˉ \bar X Xˉ的情况下,我们就可以推出第三个样本 X 3 X_3 X3的值,对应的自由度为 2.

以此类推,当我们有 n n n个样本的时候,其自由度为 n − 1 n - 1 n1.也就是说,当我们有 n n n 个样本的时候,我们虽然看起来在分子上做了 n n n 个减法,但实际上我们只算出了 n − 1 n - 1 n1 个偏差量。因此,做平均的时候,要除以的分母就是 n − 1 n - 1 n1

但是,为什么 n 个减法做完,自由度只有 n - 1?是谁从中搞鬼,偷走了一个自由度?答案很简单,是 X ˉ \bar X Xˉ 。注意在总体方差中,隐含的分布均值是 μ \mu μ ,这个均值是知道了总体的分布后计算出来的,而在样本方差中 μ \mu μ 是未知的,所以在估计方差之前,我们会需要先找一个 μ \mu μ 的代替,也就是 X ˉ \bar X Xˉ ,而 X ˉ \bar X Xˉ是根据样本算出来的. 也就是说,在用 X ˉ \bar X Xˉ 代替 μ \mu μ 的过程中,我们损失了一个自由度。

那么,如果问题的背景变了,我们知道隐含的分布均值 μ \mu μ ,只是不知道 σ 2 \sigma^2 σ2 ,那我们该如何估计 σ 2 \sigma^2 σ2?这种情况下求方差就变成了符合直觉的 ( X 1 − μ ) 2 + ( X 2 − μ ) 2 + ⋯ + ( X n − μ ) 2 n \frac{(X_1-\mu)^2+(X_2-\mu)^2+\dots+(X_n-\mu)^2}{n} n(X1μ)2+(X2μ)2++(Xnμ)2

严密推导过程

估计量的评选标准

当我们用抽样的方法去估计总体时,总是希望每次抽样的结果尽可能的靠近实际的总体评估量,同时抽取的样本越多时越接近实际的总体评估量。对于评估量的好坏有如下三个评价指标

无偏性

θ \theta θ是总体的未知参数, X 1 , X 2 , . . . . . X n X_1,X_2,.....X_n X1,X2,.....Xn是总体的一个样本, θ ^ \widehat \theta θ 是参数的一个估计量,若
E ( θ ^ ) = θ E(\widehat \theta)=\theta E(θ )=θ
则称 θ ^ \widehat \theta θ θ \theta θ的一个无偏估计量
无偏性简单来说就是取样后得到的估计量 θ ^ \widehat \theta θ 的期望就等于总体的估计量。

考虑如下一个打靶的例子。如果有一个射击高手打靶,那么结果总会在靶心附近(总体期望 θ \theta θ),那么我们一般会通过打靶结果(也就是样本 θ ^ \widehat \theta θ )认为这是一个熟练的射击手,对于多次的打靶结果我们对其打靶结果的期望是靶心( E ( θ ^ ) = θ E(\widehat \theta)=\theta E(θ )=θ),也就是无偏的。
在这里插入图片描述

但如果出现了如下这种结果,通过这些样本我们就会猜测集中在一点附近可能是一个射击高手,这个偏差可能是由于瞄准镜歪了这种导致的呢
在这里插入图片描述

对于这种稳定影响结果的因素导致的偏差称为系统偏差,也就是 E ( θ ^ ) − θ E(\widehat \theta)-\theta E(θ )θ。无偏估计的实际意义就是无系统偏差。很明显无偏估计更接近实际的总体统计量

有效性

θ ^ 1 {\widehat \theta}_1 θ 1 θ ^ 2 {\widehat \theta}_2 θ 2都是样本 X 1 , X 2 , . . . . . X n X_1,X_2,.....X_n X1,X2,.....Xn的无偏估计量,若对于任意取值范围里有 D ( θ ^ 1 ) ≤ D ( θ ^ 2 ) D({\widehat \theta}_1) \le D({\widehat \theta}_2) D(θ 1)D(θ 2),
θ ^ 1 {\widehat \theta}_1 θ 1 θ ^ 2 {\widehat \theta}_2 θ 2更加有效。
有效性就是同样无偏的估计量,更集中,方差更小的估计量更好
接着考虑如下打靶结果,虽然期望都是靶心,但是很明显后面的结果更加集中,相应的评估效果也会更好
在这里插入图片描述

相合性

之前的无偏性和一致性都是在样本容量固定为n的情况下讨论的,而如果样本容量越来越多时,一个估计量能稳定于待估的参数真值
相合性大样本条件下,估计值等于实际值.对于任意 θ > 0 \theta >0 θ>0,有
lim ⁡ n → ∞ P ( ∣ θ ^ − θ ∣ < ε ) = 1. \lim\limits_{n\to\infty}P\left(|\hat\theta-\theta| < \varepsilon\right)=1. nlimP(θ^θ<ε)=1.

推导

首先来看一下在分母为n的情况下样本方差是不是总体方差的无偏估计量:
E ( S 2 ) = E [ 1 n ∑ i = 1 n ( X i − X ˉ ) 2 ] = E [ 1 n ∑ i = 1 n ( ( X i − μ ) − ( X ˉ − μ ) ) 2 ] = E [ 1 n ∑ i = 1 n ( ( X i − μ ) 2 − 2 ( X i − μ ) ( X ˉ − μ ) + ( X ˉ − μ ) 2 ) ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − 2 n ( X ˉ − μ ) ∑ i = 1 n ( X i − μ ) + 1 n ( X ˉ − μ ) 2 ∑ i = 1 n 1 ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − 2 n ( X ˉ − μ ) ∑ i = 1 n ( X i − μ ) + ( X ˉ − μ ) 2 ] \begin{aligned} E(S^2) &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar X)^2 \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} \Bigg( (X_i - \mu)-(\bar X - \mu) \Bigg)^2 \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} \Bigg( (X_i - \mu)^2-2(X_i - \mu)(\bar X - \mu)+(\bar X - \mu)^2 \Bigg) \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2- \frac{2}{n} (\bar X - \mu) \sum_{i=1}^{n}(X_i - \mu)+ \frac{1}{n} (\bar X - \mu)^2 \sum_{i=1}^{n} 1 \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2- \frac{2}{n} (\bar X - \mu) \sum_{i=1}^{n}(X_i - \mu)+ (\bar X - \mu)^2 \right ] \end{aligned} E(S2)=E[n1i=1n(XiXˉ)2]=E n1i=1n((Xiμ)(Xˉμ))2 =E[n1i=1n((Xiμ)22(Xiμ)(Xˉμ)+(Xˉμ)2)]=E[n1i=1n(Xiμ)2n2(Xˉμ)i=1n(Xiμ)+n1(Xˉμ)2i=1n1]=E[n1i=1n(Xiμ)2n2(Xˉμ)i=1n(Xiμ)+(Xˉμ)2]

其中
X ˉ − μ = 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n μ = 1 n ∑ i = 1 n ( X i − μ ) \bar X - \mu=\frac{1}{n}\sum_{i=1}^{n} X_i-\frac{1}{n}\sum_{i=1}^{n} \mu=\frac{1}{n}\sum_{i=1}^{n} (X_i-\mu) Xˉμ=n1i=1nXin1i=1nμ=n1i=1n(Xiμ)

接着计算有:
E ( S 2 ) = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − 2 n ( X ˉ − μ ) ∑ i = 1 n ( X i − μ ) + ( X ˉ − μ ) 2 ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − 2 n ( X ˉ − μ ) ⋅ n ⋅ ( X ˉ − μ ) + ( X ˉ − μ ) 2 ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − ( X ˉ − μ ) 2 ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 ] − E [ ( X ˉ − μ ) 2 ] = σ 2 − E [ ( X ˉ − μ ) 2 ] \begin{aligned} E(S^2) &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2- \frac{2}{n} (\bar X - \mu) \sum_{i=1}^{n}(X_i - \mu)+ (\bar X - \mu)^2 \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2- \frac{2}{n} (\bar X - \mu) \cdot n \cdot (\bar X - \mu)+ (\bar X - \mu)^2 \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2- (\bar X - \mu)^2 \right ] \\ &= E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 \right ]- E \bigg [(\bar X - \mu)^2 \bigg ] \\ &= \sigma^2-E \bigg [(\bar X - \mu)^2 \bigg ] \end{aligned} E(S2)=E[n1i=1n(Xiμ)2n2(Xˉμ)i=1n(Xiμ)+(Xˉμ)2]=E[n1i=1n(Xiμ)2n2(Xˉμ)n(Xˉμ)+(Xˉμ)2]=E[n1i=1n(Xiμ)2(Xˉμ)2]=E[n1i=1n(Xiμ)2]E[(Xˉμ)2]=σ2E[(Xˉμ)2]
可以看到同样在除以 n n n的情况下只有当 X ˉ = μ \bar X = \mu Xˉ=μ时才有 E ( S 2 ) = σ 2 E(S^2)= \sigma^2 E(S2)=σ2,在其他情况下 E ( S 2 ) E(S^2) E(S2)都是小于 σ 2 \sigma^2 σ2的。这一个结果也很好理解,只要样本均值 X ˉ \bar X Xˉ越偏离总体均值 μ \mu μ,样本也就越偏离总体均值。

请添加图片描述
接下来就是要计算出差异 E [ ( X ˉ − μ ) 2 ] E \bigg [(\bar X - \mu)^2 \bigg ] E[(Xˉμ)2]是多少

E ( X ˉ ) = E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E ( X i ) = 1 n ∑ i = 1 n μ = μ E(\bar{X}) = E\bigg(\frac{1}{n} \sum_{i=1}^{n} X_i\bigg) = \frac{1}{n}\sum_{i=1}^nE(X_i) = \frac{1}{n}\sum_{i=1}^n \mu = \mu E(Xˉ)=E(n1i=1nXi)=n1i=1nE(Xi)=n1i=1nμ=μ
D ( a X i ) = a 2 D ( X i ) D(aX_i) = a^2 D(X_i) D(aXi)=a2D(Xi)
代入有:
E [ ( X ˉ − μ ) 2 ] = E [ ( X ˉ − E ( X ˉ ) ) 2 ] = D ( X ˉ ) = D ( 1 n ∑ i = 1 n X i ) = 1 n 2 ∑ i = 1 n D ( X i ) = 1 n 2 ⋅ n σ 2 = σ 2 n \begin{aligned} E \bigg [(\bar X - \mu)^2 \bigg ] &= E \bigg [(\bar X - E(\bar{X}))^2 \bigg ] \\ &=D(\bar{X})\\ &=D\bigg(\frac{1}{n} \sum_{i=1}^{n} X_i\bigg)\\ &=\frac{1}{n^2} \sum_{i=1}^{n} D(X_i) \\ &=\frac{1}{n^2} \cdot n \sigma^2 \\ &=\frac{\sigma^2}{n} \end{aligned} E[(Xˉμ)2]=E[(XˉE(Xˉ))2]=D(Xˉ)=D(n1i=1nXi)=n21i=1nD(Xi)=n21nσ2=nσ2
所以
E ( S 2 ) = σ 2 − E [ ( X ˉ − μ ) 2 ] = n − 1 n σ 2 E(S^2) = \sigma^2-E \bigg [(\bar X - \mu)^2 \bigg ] =\frac{n-1}{n}\sigma^2 E(S2)=σ2E[(Xˉμ)2]=nn1σ2

进行一下调整,即有
n n − 1 E ( S 2 ) = n n − 1 E [ 1 n ∑ i = 1 n ( X i − X ˉ ) 2 ] = E [ 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 ] = σ 2 \frac{n}{n-1}E(S^2)=\frac{n}{n-1} E \left [ \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar X)^2 \right ]=E \left [ \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar X)^2 \right ]=\sigma^2 n1nE(S2)=n1nE[n1i=1n(XiXˉ)2]=E[n11i=1n(XiXˉ)2]=σ2

这样得到的就是无偏的估计

https://www.zhihu.com/question/20099757
https://www.zhihu.com/question/22983179

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1486749.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

运维团队如何借助分布式部署提升监控效率与可靠性

随着企业IT基础设施的日益复杂和分布式架构的广泛应用&#xff0c;传统的监控解决方案已经难以满足现代运维团队的需求。在这样的背景下&#xff0c;分布式部署作为一种新型的监控架构&#xff0c;以其灵活性、可扩展性和高可用性&#xff0c;成为了运维团队提升监控效率与可靠…

centos系统mysql数据库差异备份与恢复

文章目录 差异备份mysql数据一、 安装 Percona XtraBackup数据库中创建一些数据三、创建全备份四、创建差异备份1. 在数据库中添加数据&#xff0c;让数据发生一些改变2. 创建第一个差异备份3. 数据库中再次添加一些数据4. 创建第二个差异备份 五、模拟数据丢失&#xff0c;删库…

nest学习笔记(一)

介绍 nest是一个用于构建高效&#xff0c;可拓展的nodejs服务端应用程序的框架&#xff0c;它使用渐进式javascript&#xff0c;使用Typescript构建并且完全支持Typescript&#xff0c;而且运行开发者使用javascript编写代码&#xff0c;提供了OOP、FP、FRP nest的底层是基于…

Kolla-Ansible的确是不支持CentOS-Stream系列产品了

看着OpenStack最新的 C 版本出来一段时间了&#xff0c;想尝个鲜、用Kolla-Ansible进行容器化部署&#xff0c;结果嘛。。。 根据实验结果&#xff0c;自OpenStack Bobcat版本开始&#xff0c;Kolla-Ansible就适合在CentOS系列产品上部署了&#xff0c;通过对 Bobcat和Caracal…

springcloud接入skywalking作为应用监控

下载安装包 需要下载SkyWalking APM 和 Java Agent 链接: skywalking 安装 下载JDK17&#xff08;可不配置环境变量&#xff09; 目前skywalking 9.0及以上版本基本都不支持JDK8&#xff0c;需要JDK11-21&#xff0c;具体版本要求在官网查看。 我这里使用的是skywalking9.…

每日好题(2)

#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> int main(void) {int arr[6] { 1,2,3,4,5,6 };char* p arr;int sz sizeof(arr) / sizeof(arr[0]);for (int a 0; a < sz; a){printf("%d\n", *p);p 4;}return 0; }这串代码遍历打印数组的结果是没…

BGP选路之Preferred value

原理概述 当一台BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由的属性进行比较&#xff0c;以确定去往该目标网络的最优BGP路由&#xff0c;然后将该最优BGP路由与去往同一目标网络的其他协议路由进行比较&#xff0c;从而决定是否将该最优…

小程序多排数据横向滚动实现

如何实现多排数据滚动效果 swiper 外部容器 swiper-item 每一页的数据 因为现在有多排数据,现在在swiper-item 中需要循环一个数组 初版 <template><view><view class"container"><view class"swiper-box"><swiper class&qu…

操作系统——笔记(1)

操作系统是管理计算机硬件资源&#xff0c;控制其他程序运行并为用户提供交互操作界面的系统软件的集合&#xff0c;控制和管理着整个计算机系统的硬件和软件资源&#xff0c;是最基本的系统软件。 常见的操作系统&#xff1a;ios、windows、Linux。 计算机系统的结构层次&am…

“论软件测试中缺陷管理及其应用”写作框架,软考高级论文,系统架构设计师论文

原创范文 软件缺陷指的是计算机软件或程序中存在的某种破坏正常运行能力的问题、错误&#xff0c;或者隐藏的功能缺陷。缺陷的存在会导致软件产品在某种程度上不能满足用户的需要。在目前的软件开发过程中&#xff0c;缺陷是不可避免的。软件测试是发现缺陷的主要手段&#xf…

计算机网络基础:2.TCP/IP模型中的各层协议、IP地址

一、TCP/IP模型中的各层协议 接着第一篇餐厅运营的例子来解释一下TCP/IP五层模型中的每一层协议&#xff1a; 1. 应用层&#xff08;餐饮一体机&#xff09; 在TCP/IP模型中&#xff0c;应用层直接与用户交互&#xff0c;提供网络服务。这一层将OSI模型的应用层&#xff08;点…

colab进行keras入门随机数和标签的一点思考,例如shape和Dense等

keras官方中文文档 pip install kerasfrom keras import layers from keras import modelsmodel.add(layers.Dense(32,activationrelu,input_shape(100,)))# 添加多个Dense层 model.add(layers.Dense(10,activationsoftmax)) model.compile(optimizerrmsprop,losscategorical_…

pikachu之sql lnjet 字符型注入

先测试一下闭合 注释符号&#xff1a;-- 注释符号可以忽略其后的内容&#xff0c;使得后续的原始查询内容不会影响我们注入的SQL代码。 条件测试&#xff1a;通过and 11和and 12分别测试真假条件&#xff0c;可以判断输入是否成功闭合&#xff0c;并且可以检测注入是否成功。 …

Kotlin 协程 — 基础

Kotlin 协程 — 基础 协程已经存在一段时间了&#xff0c;关于它的各种文章也很多。但我发现想要了解它还比较费时&#xff0c;所以我花了一段时间才真正理解了协程的基础知识以及它的工作原理。因此&#xff0c;我想分享一些我理解到的内容。 什么是协程&#xff1f; 协程代表…

关于OLED的I2C手册记录

首先我们从淘宝上面找到对应OLED 4pin iic驱动的ssd1306手册&#xff0c;它有多种的驱动方式&#xff0c;我们只需要看看他这个i2c模式。 我们可以从中看到 Slave address R/W后面的#代表低电平是W。 SA0是它的一个 slave address bit 可以使用 这两个都可以作为OLED的 设备…

分布式事务与Seata落地

分布式事务与Seata落地 一、事务基础 1.1 本地事务 事务指的就是一个操作单元, 在这个操作单元中的所有操作最终要保持一致的行为, 要么所有操作都成功, 要么所有的操作都被撤销。 1.2 本地事务特性 本地事务四大特性: ACID A: 原子性(Atomicity), 一个事务中的所有操作, …

如何通过一条SQL变更多个分库分表?

数据库发展到今天&#xff0c;分库分表已经不是什么新鲜话题了&#xff0c;传统的单节点数据库架构在数据量和访问频次达到一定规模时&#xff0c;会出现性能瓶颈和扩展性问题&#xff0c;而分库分表技术通过将数据分散到多个数据库实例中来分担负载&#xff0c;从而提升系统的…

数字信号||离散序列的基本运算(2)

实验二 离散序列的基本运算 一、实验目的 (1)进一步了解离散时间序列时域的基本运算。 (2)了解MATLAB语言进行离散序列运算的常用函数&#xff0c;掌握离散序列运算程序的编写方法。 二、实验涉及的MATLAB子函数 1.find 功能&#xff1a;寻找非零元素的索引号。 调用格…

BGP选路之Local Preference

原理概述 当一台BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由的属性进行比较&#xff0c;以确定去往该目标网络的最优BGP路由。BGP首先比较的是路由信息的首选值&#xff08;PrefVal)&#xff0c;如果 PrefVal相同&#xff0c;就会比较本…

Linux_权限3

Linux所对应的文件类型 1.在Win下&#xff0c;有文件类型&#xff0c;通常通过后缀标识 日常用的就是windows系统这里不做举例. 2.Linux的文件类型不通过后缀区分&#xff08;不代表Linux不用后缀) 其中需要注意的是第一个字符表示文件类型的含义 - :普通文件, 文本, 源代码…