stm32 - 中断

stm32 - 中断

  • 概念
  • 中断向量表
  • NVIC 嵌套中断向量控制器
    • 优先级
  • 中断
    • EXTI
      • 概念
      • 基本结构
      • 例子- 对射式红外传感器计次
      • 例子 - 旋转编码器

概念

stm32 支持的中断资源(都属于外设)

  • EXTI
  • TIM
  • ADC
  • USARt
  • SPI
  • I2C

stm32支持的中断

内核中断
外设中断

中断通道与优先级

一个外设可能占用多个中断通道(一个EXTI外设模块,可以有多个中断通道)
每个中断通道有16个优先级

中断向量表

自定义的中断服务函数,由编译器随机指定函数地址
stm32的中断,由于硬件的限制,只能跳到固定的地址执行程序
为了能让硬件跳转到一个不固定的中断函数中, 需要在内存中定义一个地址列表,这个列表的地址是固定的,中断发生后,先跳到这个固定位置,然后在这个固定位置,由编译器加上一条跳转到中断函数的代码,这样中断就可以跳转到任意位置了

NVIC 嵌套中断向量控制器

用于同一分配中断优先级和管理中断的,NVIC是一个内核外设

一个外设可能占用多个中断通道,所以有n条线
NVIC只有一个输出口,其根据每个中断的优先级分配中断的先后顺序
然后通过仅有的一个输出口,通知CPU应该处理哪个中断

在这里插入图片描述

优先级

  • 响应优先级:“插队看病”
  • 抢占优先级:“中断嵌套”

NVIC中断优先级由优先级寄存器的4位(0~15)决定,数值越小优先级越高
高n位为抢占优先级,4-n位为响应优先级
抢占优先级高的可以中断嵌套,响应优先高的可以优先排队,抢占优先级和响应优先级均相同的按中断号排队

中断

EXTI

检测指定GPIO的电平信号
电平信号发生变化时,EXTI申请中断

概念

触发方式

上升沿(低->高)触发中断
下降沿(高->低)触发中断
双边沿(上升沿和下降沿都可以触发中断)
软件触发:引脚电平未发生变化,通过在软件中调用执行代码触发中断

GPIO

任意的GPIO口都可以当做外部中断的引脚,但是相同的pin引脚不能同时触发中断(PA0/PB0; PA1/PB1/PC1)

通道数

16个GPIO_pin,外加PVD输出,RTC闹钟,USB唤醒,以太网唤醒

触发响应方式

中断响应:申请中断,让CPU执行中断函数
事件响应: 当外部中断检测到引脚电平变化时,正常的流程是选择触发中断,也可以选择触发事件,那么外部中断的信号就不会通向CPU了,而是通向其他外设,用来触发其他外设的操作

基本结构

EXTI模块支持20个中断通道数,16个pin_脚+PVD+RTC+USB+ETH

针对GPIO,利用AFIO进行中断选择(当使用GPIO实现外部中断时)

PA0/PB0/PC0… 通过AFIO选择器选择一个作为pin_0通道
PA1/PB1/PC1… 通过AFIO选择器选择一个作为pin_1通道
PA2/PB2/PC2… 通过AFIO选择器选择一个作为pin_2通道

每个通道有16可配置优先级,通过NVIC进行优先级配置
NVIC可以进行优先级分组(抢占/响应),每个分组都有取值范围,不同的取值范围,在CPU进行中断服务的时机不同

注意16个引脚输入通道,最终只有7个输入,其中9-5和15-10便成了路两路输出通道,因此需要中断标志位判断哪一个中断过来
在这里插入图片描述
在这里插入图片描述

PB14引脚的电平信号就可以通过AFIO进入到EXTI电路中
在这里插入图片描述

例子- 对射式红外传感器计次

main.c

#include "stm32f10x.h"
#include "OLED.h"
#include "infrCountSensor.h"int main()
{OLED_Init();OLED_ShowString(1,1,"helloworld");OLED_ShowString(2,1,"count: ");InfrCountSensor_Init(14);while (1) {OLED_ShowNum(2,8,InfrCountSensor_GetCount(),8);}
}

infrCountSensor.h

#ifndef __INFRCOUNTSENSOR_H__
#define __INFRCOUNTSENSOR_H__
#include "stm32f10x.h"
void InfrCountSensor_Init(unsigned char pin_num);
unsigned int InfrCountSensor_GetCount();
uint16_t GPIO_Pin_Num_Set(uint16_t pin_num);
uint8_t GPIO_AFIO_Pin_Num_Select(uint16_t pin_num);
uint32_t EXTI_Line_Set(unsigned char pin_num);
#endif

infrCountSensor.c

#include "infrCountSensor.h"static unsigned int infrCountSensor_count;uint16_t GPIO_Pin_Num_Set(uint16_t pin_num)
{uint16_t GPIO_Pin_num=0;switch (pin_num){case 0: {return GPIO_Pin_0;break;}case 1: {return GPIO_Pin_1;break;}case 2: {return GPIO_Pin_2;break;}case 3: {return GPIO_Pin_3;break;}case 4: {return GPIO_Pin_4;break;}case 5: {return GPIO_Pin_5;break;}case 6: {return GPIO_Pin_6;break;}case 7: {return GPIO_Pin_7;break;}case 8: {return GPIO_Pin_8;break;}case 9: {return GPIO_Pin_9;break;}case 10: {return GPIO_Pin_10;break;}case 11: {return GPIO_Pin_11;break;}case 12: {return GPIO_Pin_12;break;}case 13: {return GPIO_Pin_13;break;}case 14: {return GPIO_Pin_14;break;}case 15: {return GPIO_Pin_14;break;}default: return GPIO_Pin_num;}}uint8_t GPIO_AFIO_Pin_Num_Select(uint16_t pin_num)
{uint8_t AFIO_Pin_num=0;switch (pin_num){case 0: {return GPIO_PinSource0;break;}case 1: {return GPIO_PinSource1;break;}case 2: {return GPIO_PinSource2;break;}case 3: {return GPIO_PinSource3;break;}case 4: {return GPIO_PinSource4;break;}case 5: {return GPIO_PinSource5;break;}case 6: {return GPIO_PinSource6;break;}case 7: {return GPIO_PinSource7;break;}case 8: {return GPIO_PinSource8;break;}case 9: {return GPIO_PinSource9;break;}case 10: {return GPIO_PinSource10;break;}case 11: {return GPIO_PinSource11;break;}case 12: {return GPIO_PinSource12;break;}case 13: {return GPIO_PinSource13;break;}case 14: {return GPIO_PinSource14;break;}case 15: {return GPIO_PinSource14;break;}default: return AFIO_Pin_num;}
}uint32_t EXTI_Line_Set(unsigned char pin_num)
{uint32_t EXTI_Line_num=0;switch (pin_num){case 0: {return EXTI_Line0;break;}case 1: {return EXTI_Line1;break;}case 2: {return EXTI_Line2;break;}case 3: {return EXTI_Line3;break;}case 4: {return EXTI_Line4;break;}case 5: {return EXTI_Line5;break;}case 6: {return EXTI_Line6;break;}case 7: {return EXTI_Line7;break;}case 8: {return EXTI_Line8;break;}case 9: {return EXTI_Line9;break;}case 10: {return EXTI_Line10;break;}case 11: {return EXTI_Line11;break;}case 12: {return EXTI_Line12;break;}case 13: {return EXTI_Line13;break;}case 14: {return EXTI_Line14;break;}case 15: {return EXTI_Line15;break;}default: return EXTI_Line_num;}
}void InfrCountSensor_Init(unsigned char pin_num)
{// 打开GPIO/AFIO时钟// GPIO和AFIO是APB2总线的外设,需要手动开启时钟,RCC用于配置内核外的外设时钟// EXIT中断默认开始时钟,NVIC是内核外设(内核外设也无需开启时钟)RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);// 配置GPIO 输入模式uint16_t GPIO_Pin_num=0;GPIO_Pin_num=GPIO_Pin_Num_Set(pin_num);GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;		// 上拉输入GPIO_InitStructure.GPIO_Pin=GPIO_Pin_num;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStructure);// 配置AFIO 选择器(中断引脚选择)// GPIO_AFIODeInit(); 		// 清空配置// GPIO_PinLockConfig(); 	// 锁定引脚,防止意外被更改// GPIO_PinRemapConfig(); 		// 引脚重映射// 选择指定的GPIO / pin 作为外部中断源uint8_t AFIO_Pin_num=0;AFIO_Pin_num=GPIO_AFIO_Pin_Num_Select(pin_num);GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,AFIO_Pin_num); // 配置数据选择器,// AFIO_Pin_num 是AFIO的中断选择器号,这里是第14个数据选择器// 配置EXTI中断,触发方式,触发响应方式// EXTI_DeInit(); 		// 清除配置// EXTI_StructInit(); 	// 结构体赋值// EXTI_GenerateSWinterrupt(); // 软件触发// 外部中断的外部状态寄存器会设置对应的标志位// 在主程序中读写外部中断标志位,在中断服务函数中读写外部中断标志位uint32_t EXTI_Line_num=0;EXTI_Line_num=EXTI_Line_Set(pin_num);EXTI_InitTypeDef EXTI_InitStructure;EXTI_InitStructure.EXTI_Line=EXTI_Line_num;				// 指定要配置的中断线,中断EXTI输入通道EXTI_InitStructure.EXTI_LineCmd=ENABLE;					// 中断线的新状态,开启中断EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt ;		// 中断模式interrupt或事件模式eventEXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling;	//触发方式,下降沿EXTI_Init(&EXTI_InitStructure); 						// 初始化// 配置NVIC,中断优先级,进入CPU再执行中断程序NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 中断分组,两位抢占,两位响应NVIC_InitTypeDef NVIC_InitStructure;NVIC_InitStructure.NVIC_IRQChannel=EXTI15_10_IRQn;		// 中断EXTI输出通道,15-10占用一个通道,在中断服务函数中需要判断中断标志位NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;	// 抢占优先级(在抢占中断中)NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;		// 响应优先级 (在响应中断中)NVIC_Init(&NVIC_InitStructure);
}void EXTI15_10_IRQHandler(void) // 中断函数
{// 中断标志位的判断if (EXTI_GetITStatus(EXTI_Line14)==SET){// 清楚中断标志位EXTI_ClearITPendingBit(EXTI_Line14);infrCountSensor_count++;}
}unsigned int InfrCountSensor_GetCount()
{return infrCountSensor_count;
}

例子 - 旋转编码器

对于两个中断,AFIO、EXTI、NVIC的code方式

main.c

#include "stm32f10x.h"
#include "Delay.h"
#include "LED.h"
#include "key.h"
#include "Buzzer.h"
#include "PhotoSensor.h"
#include "OLED.h"
#include "infrCountSensor.h"
#include "encoder.h"int main()
{OLED_Init();OLED_ShowString(1,1,"helloworld");OLED_ShowString(2,1,"count: ");Encoder_Init();while (1) {OLED_ShowSignedNum(2,8,Encoder_Get(),8);}
}

encoder.h

#ifndef __ENCODER_H__
#define __ENCODER_H__#include "stm32f10x.h"
void Encoder_Init();
int16_t Encoder_Get();
#endif

encoder.c

#include "encoder.h"int16_t encoder_rotate;void Encoder_Init()
{// 打开GPIO/AFIO时钟// GPIO和AFIO是APB2总线的外设,需要手动开启时钟,RCC用于配置内核外的外设时钟// EXIT中断默认开始时钟,NVIC是内核外设(内核外设也无需开启时钟)RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);// 配置GPIO 输入模式GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;		// 上拉输入GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0 | GPIO_Pin_1;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStructure);// 配置AFIO 选择器(中断引脚选择)// 选择指定的GPIO / pin 作为外部中断源GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource0); // 配置数据选择器,// AFIO_Pin_num 是AFIO的中断选择器号,这里是第14个数据选择器GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource1); // 配置数据选择器,// AFIO_Pin_num 是AFIO的中断选择器号,这里是第14个数据选择器// 配置EXTI中断,触发方式,触发响应方式// 外部中断的外部状态寄存器会设置对应的标志位// 在主程序中读写外部中断标志位,在中断服务函数中读写外部中断标志位;EXTI_InitTypeDef EXTI_InitStructure;EXTI_InitStructure.EXTI_Line=EXTI_Line0 | EXTI_Line1;				// 指定要配置的中断线,中断EXTI输入通道EXTI_InitStructure.EXTI_LineCmd=ENABLE;					// 中断线的新状态,开启中断EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt ;		// 中断模式interrupt或事件模式eventEXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling;	//触发方式,下降沿EXTI_Init(&EXTI_InitStructure); 						// 初始化// 对两个通道分别设置优先级// 配置NVIC,中断优先级,进入CPU再执行中断程序NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 中断分组,两位抢占,两位响应NVIC_InitTypeDef NVIC_InitStructure;NVIC_InitStructure.NVIC_IRQChannel=EXTI0_IRQn;		// 中断EXTI输出通道NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;	// 抢占优先级(在抢占中断中)NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;		// 响应优先级 (在响应中断中)NVIC_Init(&NVIC_InitStructure);NVIC_InitStructure.NVIC_IRQChannel=EXTI1_IRQn;		// 中断EXTI输出通道NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;	// 抢占优先级(在抢占中断中)NVIC_InitStructure.NVIC_IRQChannelSubPriority=2;		// 响应优先级 (在响应中断中)NVIC_Init(&NVIC_InitStructure);
}void EXTI0_IRQHandler()
{if (EXTI_GetITStatus(EXTI_Line0)==SET){EXTI_ClearITPendingBit(EXTI_Line0);if (GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_1)==0){encoder_rotate--;} }
}void EXTI1_IRQHandler()
{if (EXTI_GetITStatus(EXTI_Line1)==SET){EXTI_ClearITPendingBit(EXTI_Line1);if (GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0)==0){encoder_rotate++;} }
}int16_t Encoder_Get()
{return encoder_rotate;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/148015.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C# 读取Execl文件3种方法

方法 1,使用OLEDB可以对excel文件进行读取 1.1C#提供的数据连接有哪些 对于不同的.net数据提供者,ADO.NET采用不同的Connection对象连接数据库。这些Connection对我们屏蔽了具体的实现细节,并提供了一种统一的实现方法。 Connection类有四…

【Linux】线程池

目录 一、线程池1.什么是线程池2.线程池图解3.实现代码 二、单例模式1.单例模式的概念2.饿汉方式实现单例模式3.懒汉方式实现单例模式4.懒汉方式实现单例模式的线程池 一、线程池 1.什么是线程池 线程虽然比进程轻量了很多,但是每创建一个线程时,需要向…

UCOS的任务创建和删除

一、任务创建和删除的API函数 1、任务创建和删除本质就是调用uC/OS的函数 API函数 描述 OSTaskCreate() 创建任务 OSTaskDel() 删除任务 注意: 1,使用OSTaskCreate() 创建任务,任务的任务控制块以及任务栈空间所需的内存&#xff0c…

算法——买卖股票问题

309. 买卖股票的最佳时机含冷冻期 - 力扣(LeetCode) 一、 究其就是个动态规划的问题 算法实现图 初始化 由于有三个阶段,买入,可交易,冷冻期,那么用dp表表示现在为止的最大利润,则有 dp[0][…

asp.net core 远程调试

大概说下过程: 1、站点发布使用Debug模式 2、拷贝到远程服务器,以及iis创建站点。 3、本地的VS2022的安装目录:C:\Program Files\Microsoft Visual Studio\2022\Professional\Common7\IDE下找Remote Debugger 你的服务器是64位就拷贝x64的目…

详解Linux的系统调用fork()函数

在Linux系统中,fork()是一个非常重要的系统调用,它的作用是创建一个新的进程。具体来说,fork()函数会在当前进程的地址空间中复制一份子进程,并且这个子进程几乎完全与父进程相同,包括进程代码、数据、堆栈以及打开的文…

WebSocket实战之四WSS配置

一、前言 上一篇文章WebSocket实战之三遇上PAC ,碰到的问题只能上安全的WebSocket(WSS)才能解决,配置证书还是挺麻烦的,主要是每年都需要重新更新证书,我配置过的证书最长有效期也只有两年,搞不…

ElasticSearch第四讲:ES详解:ElasticSearch和Kibana安装

ElasticSearch第四讲:ES详解:ElasticSearch和Kibana安装 本文是ElasticSearch第四讲:ElasticSearch和Kibana安装,主要介绍ElasticSearch和Kibana的安装。了解完ElasticSearch基础和Elastic Stack生态后,我们便可以开始…

ctfshow—1024系列练习

1024 柏拉图 有点像rce远程执行,有四个按钮,分别对应四份php文件,开始搞一下。一开始,先要试探出 文件上传到哪里? 怎么读取上传的文件? 第一步:试探上传文件位置 直接用burp抓包,…

力扣练习——链表在线OJ

目录 提示: 一、移除链表元素 题目: 解答: 二、反转链表 题目: 解答: 三、找到链表的中间结点 题目: 解答: 四、合并两个有序链表(经典) 题目: 解…

【数据结构---排序】很详细的哦

本篇文章介绍数据结构中的几种排序哦~ 文章目录 前言一、排序是什么?二、排序的分类 1.直接插入排序2.希尔排序3.选择排序4.冒泡排序5.快速排序6.归并排序总结 前言 排序在我们的生活当中无处不在,当然,它在计算机程序当中也是一种很重要的操…

聊聊常见的IO模型 BIO/NIO/AIO 、DIO、多路复用等IO模型

聊聊常见的IO模型 BIO/NIO/AIO/DIO、IO多路复用等IO模型 文章目录 一、前言1. 什么是IO模型2. 为什么需要IO模型 二、常见的IO模型1. 同步阻塞IO(Blocking IO,BIO)2. 同步非阻塞IO(Non-blocking IO,NIO)3.…

排序算法之【希尔排序】

📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

八大排序源码(含优化)

文章目录 1、直接插入排序2、希尔排序3、选择排序4、冒泡排序5、堆排序6、快速排序快速排序递归实现霍尔法挖坑法前后指针法快速排序小区间优化 快速排序非递归实现 7、归并排序归并排序递归实现归并排序非递归 8、计数排序 大家好,我是纪宁,这篇文章是关…

java Spring Boot 自动启动热部署 (别再改点东西就要重启啦)

上文 java Spring Boot 手动启动热部署 我们实现了一个手动热部署的代码 但其实很多人会觉得 这叫说明热开发呀 这么捞 写完还要手动去点一下 很不友好 其实我们开发人员肯定是希望重启这种事不需要自己手动去做 那么 当然可以 我们就让它自己去做 Build Project 这个操作 我们…

Linux性能优化--性能工具:系统内存

3.0.概述 本章概述了系统级的Linux内存性能工具。本章将讨论这些工具可以测量的内存统计信息,以及如何使用各种工具收集这些统计结果。阅读本章后,你将能够: 理解系统级性能的基本指标,包括内存的使用情况。明白哪些工具可以检索…

Java21 新特性

文章目录 1. 概述2. JDK21 安装与配置3. 新特性3.1 switch模式匹配3.2 字符串模板3.3 顺序集合3.4 记录模式(Record Patterns)3.5 未命名类和实例的main方法(预览版)3.6 虚拟线程 1. 概述 2023年9月19日 ,Oracle 发布了…

电子计算机核心发展(继电器-真空管-晶体管)

目录 继电器 最大的机电计算机之一——哈弗Mark1号,IBM1944年 背景 组成 性能 核心——继电器 简介 缺点 速度 齿轮磨损 Bug的由来 真空管诞生 组成 控制开关电流 继电器对比 磨损 速度 缺点 影响 代表 第一个可编程计算机 第一个真正通用&am…

使用晶体管做布尔逻辑和逻辑门

目录 二进制,三进制,五进制 true,false表示0,1 早期计算机采用进制 布尔逻辑 三个基本操作:NOT,AND,OR 基础“真值表” NOT 如何实现? AND如何实现? OR如何实现? 图标表示…

LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略

LLM之Colossal-LLaMA-2:Colossal-LLaMA-2的简介、安装、使用方法之详细攻略 导读:2023年9月25日,Colossal-AI团队推出了开源模型Colossal-LLaMA-2-7B-base。Colossal-LLaMA-2项目的技术细节,主要核心要点总结如下: >> 数据处…