C++和Python蚂蚁搬食和蚊虫趋光性和浮标机群行为算法神经网络

🎯要点

🎯机器人群行为配置和C++行为实现:🖊脚底机器人狭隘空间导航避让障碍物行为 | 🖊脚底机器人使用摄像头耦合共振,实现同步动作 | 🖊脚底机器群使用相机,计算彼此间“分子间势能”的方式寻觅彼此 | 🖊脚底机器拖拽可移动物体,模拟清理行为 | 🖊预先规划机器群活动轨迹,模拟群机导航避障 | 🖊预先规划机器群身份号,模拟群机导航避障 | 🖊模拟蚂蚁搬运食物,预先划定巢穴和外界食物区,使用OpenGL可视化机群搬运过程,机器人使用上述避障和寻觅方式执行动作 | 🖊模拟蚊虫趋光性,使用神经网络和算法创建脚底机器人趋光性动作 | 🖊模拟上级指挥下级动作,下级机群等待上级主机器人命令,收到命令执行各种动作行为。🎯统计学机器人集群量化属性 | 🎯浮标机器人集群

📜机器人用例

📜人形机算法模型:Python人形机踊跃跨栏举重投篮高维数动作算法模型

📜机器人动力学运动学求解:Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜机器人动力学运动学:Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜ROS系统机器人:ROS2(Cpp或Python)机器学习路径选择三维模拟平衡车及YOLOv8视觉消息

📜ROS树莓派Raspberry Pi机器人:Cpp(Python)和MATLAB差动驱动ROS Raspberry Pi全功能机器人原型

📜ROS机器人导航算法:Cpp或Python(ROS2)有限状态机-行为树数学模型及虚拟力场本地导航算法避障

📜树莓派Raspberry Pi机器人:Python远程SSH和HTTP视频流级联分类Raspberry Pi 机器人

📜机器人吸尘器:C(C++)和Python实现STM32F4实时操作系统(FreeRTOS)吸尘器

🍪语言内容构成

在这里插入图片描述
在这里插入图片描述

🍇Python粒子群优化算法优化葛根函数

在计算科学中,粒子群优化 是一种计算方法,它通过迭代尝试改进候选解决方案来优化问题,以满足给定的质量标准。它通过拥有一组候选解决方案(这里称为粒子)并根据粒子位置和速度的简单数学公式在搜索空间中移动这些粒子来解决问题。每个粒子的运动都受到其局部最佳已知位置的影响,但也被引导到搜索空间中的最佳已知位置,这些位置会随着其他粒子找到更好的位置而更新。这有望使群体向最佳解决方案移动。

此算法的一个基本变体是通过拥有一个候选解决方案(称为粒子)的种群(称为群体)来工作的。这些粒子根据一些简单的公式在搜索空间中移动。粒子的移动由它们自己在搜索空间中的最佳位置以及整个群体的最佳位置引导。当发现改进的位置时,这些位置将引导群体的移动。这个过程不断重复,希望最终能找到令人满意的解决方案,但不能保证。

形式上,令 f : R n → R f: R ^n \rightarrow R f:RnR 为必须最小化的成本函数。该函数将候选解作为实数向量形式的参数,并产生一个实数作为输出,该实数指示给定候选解的目标函数值。 f f f 的梯度未知。目标是为搜索空间中的所有 b b b 找到一个解决方案 a,其中 f ( a ) ≤ f ( b ) f( a ) \leq f( b ) f(a)f(b),这意味着 a a a 是全局最小值。

S S S 为群体中粒子的数量,每个粒子在搜索空间中都有一个位置 x i ∈ R n x _i \in R ^n xiRn 和一个速度 v i ∈ R n v _i \in R ^n viRn。令 p i p _i pi 为粒子 i i i 的最佳已知位置,并令 g g g​ 为整个群体的最佳已知位置。最小化成本函数的基本粒子群优化算法是:

for 每个粒子 i = 1, ..., S do使用均匀分布的随机向量初始化粒子的位置: xi ~ U(blo, bup)将粒子的已知位置初始化为其初始位置: pi ← xiif f(pi) < f(g) then更新群体最知名的位置: g ← pi初始化粒子速度: vi ~ U(-|bup-blo|, |bup-blo|)
while 不满足终止条件 do:for 每个粒子 i = 1, ..., S dofor 每个维度 d = 1, ..., n do选择随机数: rp, rg ~ U(0,1)更新粒子的速度: vi,d ← w vi,d + φp rp (pi,d-xi,d) + φg rg (gd-xi,d)更新粒子的位置: xi ← xi + viif f(xi) < f(pi) then更新粒子的已知位置: pi ← xiif f(pi) < f(g) then更新群体最知名的位置: g ← pi

b lo  b _{\text {lo }} blo  b up  b _{\text {up }} bup  分别表示搜索空间的下边界和上边界。 w参数是惯性权重。参数 φ p \varphi_p φp φ g \varphi_g φg通常被称为认知系数和社会系数。终止标准可以是执行的迭代次数,也可以是找到足够目标函数值的解决方案。 参数 w 、 φ p w 、 \varphi_{ p } wφp φ g \varphi_{ g } φg​ 由实践者选择,并控制此算法的行为和效果。

在数学优化中,葛根函数是一个非凸函数,用作优化算法的性能测试问题。它是非线性多峰函数的典型示例。由于搜索空间大且局部最小值数量多,因此寻找此函数的最小值是一个相当困难的问题。

n n n 维域上,它的定义如下:
f ( x ) = A n + ∑ i = 1 n [ x i 2 − A cos ⁡ ( 2 π x i ) ] f( x )=A n+\sum_{i=1}^n\left[x_i^2-A \cos \left(2 \pi x_i\right)\right] f(x)=An+i=1n[xi2Acos(2πxi)]
其中 A = 10 A=10 A=10 x i ∈ [ − 5.12 , 5.12 ] x_i \in[-5.12,5.12] xi[5.12,5.12]。有很多极值:

  • 全局最小值位于 x = 0 x = 0 x=0,其中 f ( x ) = 0 f( x )=0 f(x)=0
  • x i ∈ [ − 5.12 , 5.12 ] x_i \in[-5.12,5.12] xi[5.12,5.12] 的最大函数值位于 x i ∈ [ ± 4.52299366 … , … , ± 4.52299366 … ] x_i \in[ \pm 4.52299366 \ldots, \ldots, \pm 4.52299366 \ldots] xi[±4.52299366,,±4.52299366] 附近

维数  最大值为  ± 4.52299366 1 40.35329019 2 80.70658039 3 121.0598706 4 161.4131608 5 201.7664509 6 242.1197412 7 282.4730314 8 322.8263216 9 363.1796117 \begin{array}{|l|l|} \hline \text { 维数 } & \text { 最大值为 } \pm 4.52299366 \\ \hline 1 & 40.35329019 \\ \hline 2 & 80.70658039 \\ \hline 3 & 121.0598706 \\ \hline 4 & 161.4131608 \\ \hline 5 & 201.7664509 \\ \hline 6 & 242.1197412 \\ \hline 7 & 282.4730314 \\ \hline 8 & 322.8263216 \\ \hline 9 & 363.1796117 \\ \hline \end{array}  维数 123456789 最大值为 ±4.5229936640.3532901980.70658039121.0598706161.4131608201.7664509242.1197412282.4730314322.8263216363.1796117

下面是使用此算法优化葛根函数的示例,葛根函数是优化中流行的测试函数。葛根函数有许多局部最小值,使其成为一个具有挑战性的优化问题。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Ddef rastrigin(x):n = len(x)return 10*n + sum([xi**2 - 10*np.cos(2*np.pi*xi) for xi in x])def pso(cost_func, dim=2, num_particles=30, max_iter=100, w=0.5, c1=1, c2=2):particles = np.random.uniform(-5.12, 5.12, (num_particles, dim))velocities = np.zeros((num_particles, dim))best_positions = np.copy(particles)best_fitness = np.array([cost_func(p) for p in particles])swarm_best_position = best_positions[np.argmin(best_fitness)]swarm_best_fitness = np.min(best_fitness)for i in range(max_iter):r1 = np.random.uniform(0, 1, (num_particles, dim))r2 = np.random.uniform(0, 1, (num_particles, dim))velocities = w * velocities + c1 * r1 * (best_positions - particles) + c2 * r2 * (swarm_best_position - particles)particles += velocitiesfitness_values = np.array([cost_func(p) for p in particles])improved_indices = np.where(fitness_values < best_fitness)best_positions[improved_indices] = particles[improved_indices]best_fitness[improved_indices] = fitness_values[improved_indices]return swarm_best_position, swarm_best_fitnesssolution, fitness = pso(rastrigin, dim=dim)print('Solution:', solution)
print('Fitness:', fitness)x = np.linspace(-5.12, 5.12, 100)
y = np.linspace(-5.12, 5.12, 100)
X, Y = np.meshgrid(x, y)
Z = rastrigin([X, Y])fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='viridis')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')ax.scatter(solution[0], solution[1], fitness, color='red')
plt.show()

👉参阅&更新:计算思维 | 亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1475115.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Docker——简介、安装(Ubuntu22.04)

1、简介 Docker 是一个开源的容器化平台&#xff0c;旨在简化应用程序的开发、交付和运行。它通过将应用程序及其所有依赖项打包到一个称为容器的标准化单元中&#xff0c;使应用程序能够在任何环境中一致地运行。Docker 解决了“在我的机器上能运行”的问题&#xff0c;使开发…

8、开发与大模型对话的独立语音设备

一、设计原理 该系统的核心部分主要由ESP32-WROVER开发板和ESP32-CAM摄像头、MAX9814麦克风放大器模块、MAX98357功放、声音传感器和SU-03T语音识别芯片构成。通过使用ESP32-WROVER开发板,用户可以实现通过语音与ai进行交互并进行人脸识别。 系统中,从外部输入电源中获取电源…

计算机网络-组播分发树与组播协议

一、组播分发树 前面我们大致了解了下组播的转发原理&#xff0c;通过RPF反向路径检查可以形成无环的组播转发路径&#xff0c;今天继续学习下组播分发树和组播协议。 组播数据转发需要保证转发路径无环&#xff0c;无次优路径且无重复包。通过RPF机制与组播路由协议&#xff0…

王老师 linux c++ 通信架构 笔记(一)

&#xff08;0&#xff09;本门课程会涉及很多知识。在此集中记录&#xff0c;做笔记&#xff0c;也可能加入别的专栏。 &#xff08;1&#xff09; vmware 15 的下载和密钥上网查找。 ubuntu - 16 - 04 的版本才 800 M &#xff0c;来 csdn 找镜像 下载。 &#xff08;2&#…

React Native 和 Flutter 的开发对比

React Native (RN) 和 Flutter 都是用于构建跨平台移动应用程序的流行框架。两者都具有各自的优势和劣势&#xff0c;选择哪个框架取决于您的具体需求和项目。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 以下是一些 RN 和 Flutter…

1012-27SF 同轴连接器

型号简介 1012-27SF是Southwest Microwave的2.92 mm连接器。该连接器使用不锈钢合金外壳和镀金接触表面提供了良好的耐腐蚀性和耐磨损性&#xff0c;延长了连接器的使用寿命。适用于高频应用&#xff0c;最高可达 40 GHz&#xff0c;使其适用于微波和射频通信、雷达系统等领域。…

VMware Workstation桥接模式无法上网

问题背景 我之前创建过一个虚拟机&#xff0c;当时虚拟机的网络模式使用的是桥接模式&#xff0c;配置好了固定ip地址&#xff0c;是可以正常上网的&#xff0c;中间没有做任何网络上面的配置。但是今天再打开这台虚拟机时&#xff0c;发现竟然不能上网了。 物理主机的ip信息配…

【掌握C++ string 类】——【高效字符串操作】的【现代编程艺术】

专栏&#xff1a;C学习笔记 上一篇&#xff1a;【C】——【 STL简介】——【详细讲解】 1. 为什么要学习 string 类&#xff1f; 1.1 C 语言中的字符串 在 C 语言中&#xff0c;字符串是以 \0 结尾的字符集合。如下所示&#xff1a; #include <stdio.h>int main() {c…

AI产品经理必懂的13种技术

AI产品经理和互联网产品经理一样&#xff0c;也会面临要不要懂技术&#xff0c;懂什么技术&#xff0c;到什么程度的问题&#xff0c;本章针对这一常见问题给出了解答。 AI产品经理一定要懂技术&#xff0c;懂技术重点是要懂产品方案包含的AI算法、数据、算力及硬件的相关技术…

nftables(2)表、链、规则查询和管理(新增、插入、修改、删除)

简介 在上篇文章中&#xff0c;我们介绍了nftables基本原理以及与iptables的区别&#xff0c;nftables安装和配置保存的操作。这篇文章主要介绍nftables的基本操作&#xff0c;表、链、规则的新增、插入、修改、删除等操作。 注意&#xff1a;在进行nftables实验时和iptables…

AI自动生成PPT怎么用?看完这篇文章你就知道啦

小暑&#xff0c;作为夏季的第五个节气&#xff0c;标志着炎炎夏日的正式到来。在这个时节&#xff0c;阳光明媚&#xff0c;万物生长&#xff0c;人们的心情也随着气温的升高而变得热烈。 然而&#xff0c;对于许多职场人士来说&#xff0c;小暑的到来也意味着需要准备各种汇报…

spark shuffle写操作——SortShuffleWriter

写入的简单流程&#xff1a; 1.生成ExternalSorter对象 2.将消息都是插入ExternalSorter对象中 3.获取到mapOutputWriter&#xff0c;将中间产生的临时文件合并到一个临时文件 4.生成最后的data文件和index文件 可以看到写入的重点类是ExternalSorter对象 ExternalSorter 基…

包装类的128陷阱

我们先看一段代码 Integer num1100; Integer num2100; System.out.println(num1 num2); //trueInteger num3128; Integer num4128; System.out.println(num3 num4); //false 在执行之后&#xff0c;我们会发现num1num2是true&#xff0c;而num3num4却是false&#xff0c;…

Thingsboard 系列之通过 ESP8266+MQTT 模拟设备上报数据到平台

前置工作 Thingsboard平台ESP 8266 NodeMCU 开发板IDE&#xff1a; Arduino 或 VScode 均可 服务端具体对接流程 系统管理员账号通过 Thingsboard 控制面板创建租户等信息并以租户账号登录 实体 —> 设备维护具体设备信息 创建完成后通过管理凭据修改或直接复制访问令牌…

实力上榜!Coremail连续5年入选中国网络安全市场全景图

7月4日&#xff0c;网络安全行业研究机构数说安全正式发布《2024年中国网络安全市场全景图》&#xff08;以下简称“全景图”&#xff09;&#xff0c;这是自2018年开始&#xff0c;数说安全发布的第七版全景图。 作为国内头部电子邮件产品与解决方案提供商&#xff0c;Coremai…

Linux基础: 二. Linux的目录和文件

文章目录 二. Linux的目录和文件1.1 目录概要1.2 目录详细说明 二. Linux的目录和文件 1.1 目录概要 command&#xff1a;ls / Linux的文件系统像一棵树一样&#xff0c;树干是根目录&#xff08;/&#xff09;&#xff0c;树枝是子目录&#xff0c;树叶是文件&#xff1b; …

Qt 网络编程实战

一.获取主机的网络信息 需要添加network模块 QT core gui network主要涉及的类分析 QHostInfo类 QHostInfo::localHostName() 获取本地的主机名QHostInfo::fromName(const QString &) 获取指定主机的主机信息 addresses接口 QNetworkInterface类 QNetworkInterfac…

AI绘画Stable Diffusion:超强InstantID插件—面部特征一致性风格保持与迁移,轻松搞定私人写真摄影,SDWebUI使用指南

大家好&#xff0c;我是设计师阿威 最近经常有同学问到AI绘画Stable Diffusion 关于风格迁移IPA、Instant ID等安装和使用方法&#xff0c;内容虽基础但也属常用工具。因此&#xff0c;本文将核心介绍Instant ID 使用和墨幽人造人XL体验&#xff08;这是一款可出图商用的写实摄…

uniapp微信小程序端实现微信登录

从网上看了一些&#xff0c;好像说是要先调用uni.getUserProfile 或者uni.getUserInfo获取用户信息后&#xff0c;然后再调用uni.login才行&#xff0c;但是我看着uni.getUserProfile和uni.getUserInfo 返回的都是一些匿名信息&#xff08;nickName: "微信用户", 头像…

经济寒冬:竞品凶猛,你的产品如何求生?

那些年曾被竞品干掉的产品 1997年到2010年左右是国内互联网行业的快速发展和多元化发展的时期&#xff0c;这一时期涌现出来一大批优秀的产品&#xff0c;市场竞争越来越激烈。苹果 在20 世纪 80 年代&#xff0c;乔布斯的苹果电脑&#xff0c;在当时可是PC行业的老大&#xf…