YOLOv8改进---BiFPN特征融合

一、BiFPN原理
1.1 基本原理
BiFPN(Bidirectional Feature Pyramid Network),双向特征金字塔网络是一种高效的多尺度特征融合网络,其基本原理概括分为以下几点:

  1. 双向特征融合:BiFPN允许特征在自顶向下和自底向上两个方向上进行融合,从而更有效地结合不同尺度的特征。
  2. 加权融合机制:BiFPN通过为每个输入特征添加权重来优化特征融合过程,使得网络可以更加重视信息量更大的特征。
  3. 结构优化:BiFPN通过移除只有一个输入边的节点、添加同一层级的输入输出节点之间的额外边,并将每个双向路径视为一个特征网络层,来优化跨尺度连接。

如下图所示:
在这里插入图片描述
(a) FPN (Feature Pyramid Network): 引入了自顶向下的路径来融合从第3层到第7层(P3 - P7)的多尺度特征。
(b) PANet: 在FPN的基础上增加了自底向上的额外路径。
© NAS-FPN: 使用神经架构搜索(NAS)来找到不规则的特征网络拓扑,然后重复应用相同的块。
(d) BiFPN: 通过高效的双向跨尺度连接和重复的块结构,改进了准确度和效率之间的权衡。
我们可以看出BiFPN通过双向路径允许特征信息在不同尺度间双向流动,这种双向流动可以看做是在不同尺度之间进行有效信息交换。这样的设计旨在通过强化特征的双向流动来提升特征融合的效率和有效性,从而提高目标检测的性能。

1.2 双向特征融合
双向特征融合在BiFPN中指的是一种机制,它允许在特征网络层中的信息在自顶向下和自底向上两个方向上流动和融合。这种方法与传统的单向特征金字塔网络(如PANet)相比,能够在不同层级之间更高效地融合特征,而无需增加显著的计算成本。

在BiFPN中,每一条双向路径(自顶向下和自底向上)被视作一个单独的特征网络层,然后这些层可以被重复多次,以促进更高级别的特征融合。这样做的结果是一个简化的双向网络,它增强了网络对特征融合的能力,使网络能够更有效地利用不同尺度的信息,从而提高目标检测的性能。
在这里插入图片描述
2.3 加权融合机制
加权融合机制是BiFPN中用于改进特征融合效果的一种技术。在传统的特征金字塔网络中,所有输入特征通常在没有区分的情况下等同对待,这意味着不同分辨率的特征被简单地相加在一起,而不考虑它们对输出特征的不同贡献。然而,在BiFPN中,观察到由于不同的输入特征具有不同的分辨率,它们通常对输出特征的贡献是不等的。

为了解决这个问题,BiFPN提出了为每个输入添加一个额外的权重,并让网络学习每个输入特征的重要性,融合的权重在训练过程中学习,确保了最佳的特征整合。

二、如何添加
2.1 BiFPN代码
在’ultralytics/nn/modules’目录下,创建一个py文件粘贴进去,bifpn.py

import torch.nn as nn
import torchclass swish(nn.Module):def forward(self, x):return x * torch.sigmoid(x)class Bi_FPN(nn.Module):def __init__(self, length):super().__init__()self.weight = nn.Parameter(torch.ones(length, dtype=torch.float32), requires_grad=True)self.swish = swish()self.epsilon = 0.0001def forward(self, x):weights = self.weight / (torch.sum(self.swish(self.weight), dim=0) + self.epsilon) # 权重归一化处理weighted_feature_maps = [weights[i] * x[i] for i in range(len(x))]stacked_feature_maps = torch.stack(weighted_feature_maps, dim=0)result = torch.sum(stacked_feature_maps, dim=0)return result

2.2 修改一
找到如下的文件’‘ultralytics/nn/tasks.py’',在文件的开头处导入我们的模块。

from .modules.bifpn import Bi_FPN

2.3 修改二
找到parse_model的方法,在下面注册我们的模块。
在这里插入图片描述
三、yaml文件配置

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [4, 1, Conv, [256]]  # 10-P3/8- [6, 1, Conv, [256]]  # 11-P4/16- [9, 1, Conv, [256]]  # 12-P5/32- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13 P5->P4- [[-1, 11], 1, Bi_FPN, []] # 14- [-1, 3, C2f, [256]] # 15-P4/16- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16 P4->P3- [[-1, 10], 1, Bi_FPN, []] # 17- [-1, 3, C2f, [256]] # 18-P3/8- [1, 1, Conv, [256, 3, 2]] # 19 P2->P3- [[-1, 10, 18], 1, Bi_FPN, []] # 20- [-1, 3, C2f, [256]] # 21-P3/8- [-1, 1, Conv, [256, 3, 2]] # 22 P3->P4- [[-1, 11, 15], 1, Bi_FPN, []] # 23- [-1, 3, C2f, [512]] # 24-P4/16- [-1, 1, Conv, [256, 3, 2]] # 25 P4->P5- [[-1, 12], 1, Bi_FPN, []] # 26- [-1, 3, C2f, [1024]] # 27-P5/32- [[21, 24, 27], 1, Detect, [nc]]  # Detect(P3, P4, P5)

然后,即可运行成功!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1474310.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【踩坑】修复pyinstaller报错 No module named pkg_resources.extern

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 报错如下: 修复方法: pip install --upgrade setuptools pippyinstaller -F -w main.py --hidden-importpkg_resources.py2_wa…

算法系列--分治排序|归并排序|逆序对的求解

一.基本概念与实现 归并排序(mergeSort)也是基于分治思想的一种排序方式,思路如下: 分解:根据中间下标mid将数组分解为两部分解决:不断执行上述分解过程,当分解到只有一个元素时,停止分解,此时就是有序的合并:合并两个有序的子区间,所有子区间合并的结果就是原问题的解 归并…

【TB作品】51单片机 Proteus仿真 00002仿真-智能台灯色调倒计时光强

实验报告:基于51单片机的智能台灯控制系统 背景 本实验旨在设计一个基于51单片机的智能台灯控制系统,该系统可以通过按键进行手动控制,并能根据环境光强度自动调节台灯亮度。此外,系统还具备倒计时关灯功能。 器件连接 51单片…

Xilinx FPGA:vivado关于真双端口的串口传输数据的实验

一、实验内容 用一个真双端RAM,端口A和端口B同时向RAM里写入数据0-99,A端口读出单数并存入单端口RAM1中,B端口读出双数并存入但端口RAM2中,当检测到按键1到来时将RAM1中的单数读出显示到PC端,当检测到按键2到来时&…

强化学习的数学原理:时序差分算法

概述 之前第五次课时学习的 蒙特卡洛 的方法是全课程当中第一次介绍的第一种 model-free 的方法,而本次课的 Temporal-Difference Learning 简称 TD learning (时序差分算法)就是第二种 model-free 的方法。而对于 蒙特卡洛方法其是一种 non…

QWidget窗口抗锯齿圆角的一个实现方案(支持子控件)2

QWidget窗口抗锯齿圆角的一个实现方案(支持子控件)2 本方案使用了QGraphicsEffect,由于QGraphicsEffect对一些控件会有渲染问题,比如列表、表格等,所以暂时仅作为研究,优先其他方案 在之前的文章中&#…

论文辅助笔记:ST-LLM

1 时间嵌入 2 PFA(Partial Frozen Architecture) 3 ST_LLM 3.1 初始化 3.2 forward

Idea新增Module报错:sdk ‘1.8‘ type ‘JavaSDK‘ is not registered in ProjectJdkTable

文章目录 一,创建Module报错二,原因分析三,解决方案1,点击上图的加号,把JDK8添加进来即可2,点击左侧[Project],直接设置SDK为JDK8 四,配置检查与验证 一,创建Module报错 …

【Linux】:进程创建与终止

朋友们、伙计们,我们又见面了,本期来给大家解读一下有关Linux程序地址空间的相关知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! C 语 言 专 栏:C语言:从…

dell Vostro 3690安装win11 23h2 方法

下载rufus-4.5.exe刻U盘去除限制 https://www.dell.com/support/home/zh-cn/product-support/product/vostro-3690-desktop/drivers dell官网下载驱动解压到U盘 https://dl.dell.com/FOLDER09572293M/2/Intel-Rapid-Storage-Technology-Driver_88DM9_WIN64_18.7.6.1010_A00_01…

【鸿蒙学习笔记】创建自定义组件

官方文档:创建自定义组件 目录标题 [Q&A] 如何自定义组件?1・struct 自定义组件名 {...}2・build()函数:3・@Component4・Entry5・Reusable 自定义组件的参数 buil…

GD32 MCU ADC采样率如何计算?

大家在使用ADC采样的时候是否计算过ADC的采样率,这个问题非常关键! 以下为GD32F303系列MCU中有关ADC的参数,其中ADC时钟最大值为40MHz,12位分辨率下最大采样率为2.86MSPS.如果ADC时钟超频的话,可能会造成ADC采样异常&…

SAP_MM模块-采购信息记录变更文档的三种查询方式

最近有用户在问采购信息记录变更的信息怎么去查找,想要看看是谁更改了价格,于是就给她查了一下,顺便做个记录,SAP中的业务数据或者主数据的变更信息查询方法,都是比较类似的,学会了这三个方法,其…

商家店铺电商小程序模板源码

橙色通用的商家入驻,商户商家,商家店铺,购物商城,商家购物平台app小程序网页模板。包含:商家主页、优先商家、商品详情、购物车、结算订单、个人中心、优惠券、会员卡、地址管理等功能页面。 商家店铺电商小程序模板源…

SSM高校教师教学质量评估系统-计算机毕业设计源码03344

摘要 在高等教育中,教学质量是培养优秀人才的关键。为了提高教学质量,高校需要建立一套科学、有效的教师教学质量评估系统。本研究采用 SSM技术框架,旨在开发一款高校教师教学质量评估系统。 SSM框架作为一种成熟的Java开发框架,具…

Centos新手问题——yum无法下载软件

起因:最近在学习centos7,在VM上成功安装后,用Secure进行远程登陆。然后准备下载一个C编译器,看网络上的教程,都是用yum来下载,于是我也输入了命令: yum -y install gcc* 本以为会自动下载&…

DevEco Studio无法识别本地模拟器设备的解决方法

目录 场景 解决办法 方式1 方式2 场景 有很多小伙伴遇到过安装了手机模拟器, 但是开发工具设备栏不识别手机设备的问题, 如下图,明明模拟器都安装了,并启动, 但为什么设备栏不显示呢? 解决后的截图,应该是这样(其实跟 android 类似 )

阶段三:项目开发---搭建项目前后端系统基础架构:任务11:搭建项目后台系统基础架构

任务描述 1、了解搭建民航后端框架 2、使用IDEA创建基于SpringBoot、MyBatis、MySQL、Redis的Java项目 3、以原项目为参照搭建项目所涉及到的各个业务和底层服务 4、以原项目为例,具体介绍各个目录情况并参照创建相关文件夹 任务指导 1、讲框架的选择和原理 …

数据库系统原理练习 | 作业1-第1章绪论(附答案)

整理自博主本科《数据库系统原理》专业课完成的课后作业,以便各位学习数据库系统概论的小伙伴们参考、学习。 *文中若存在书写不合理的地方,欢迎各位斧正。 专业课本: 目录 一、选择题 二:简答题 三:综合题 一、选择…

『古籍自有答案』古风H5案例赏析

「古籍自有答案」,一部由新京报与字节跳动公益联合打造的古风H5,以诗意盎然的开篇引领用户穿梭于千年文脉。 part1. 创意定位 "人生有惑问先贤,先贤答案存古籍",在这里,每一个灵魂的探问,都能在…