从零开始读RocketMq源码(一)生产者启动

目录

前言

获取源码

总概论

生产者实例

源码

A-01:设置生产者组名称

A-02:生产者服务启动

B-01:初始化状态

B-02:该方法再次对生产者组名称进行校验

B-03:判断是否为默认生产者组名称

B-04: 该方法是为了实例化MQClientInstance对象,mq客户端对象实例

B-05: 该方法就是将当前生产者对象注册到mqClientInstance中的producerTable集合中,并且生产者组名称作为key

B-06: 启动相关核心服务以及开启一系列定时任务(核心逻辑)

1. 开启请求-响应通道- this.mQClientAPIImpl.start();

2. 开启拉动式服务- this.mQClientAPIImpl.start();

3. 开启负载均衡服务- this.rebalanceService.start();

4. 开启推送服务- this.defaultMQProducer.getDefaultMQProducerImpl().start(false);

5. 启动各种计划任务- this.startScheduledTask();

a. 启动定时任务获取MQ注册中心nameServer的地址- MQClientInstance.this.mQClientAPIImpl.fetchNameServerAddr();

b. 定时从nameServer拉取topic信息到本地存储 -                                    MQClientInstance.this.updateTopicRouteInfoFromNameServer();

c. 定时清除离线的broker服务并给所有在线的broker发送心跳

d. 定时持久化消费偏移量数据

e. 定时调整消费者消息的线程池数量

B-07:初始化topic路由信息、topic訂閲信息以及topic端点映射信息

B-08:开启定时监测broker故障信息任务

B-09:发送心跳给所有的broker服务

B-10:开启定时扫描异步请求响应任务

A-03:开启监控和处理同步发送和异步发送操作的守护线程

A-04:开启消息轨迹和发送机制

总结

展望


前言

大概一年半前自己写了一篇《云原生》一文搞懂RocketMQ队列概述,这篇对rocketmq的相关概念和使用方法进行了整理概述,就像结尾说的都太局限于表面,简单使用还能将就,但一出现问题自己也很难排查,为了迈向技能的下一个阶段,还得是要读源码,学习大佬们的编码风格和技巧,对于使用mq以及排除问题也会更得心应手。因为最近一年自己的工作充满了波折,让自己没法静下心来学习整理,虽然现在也好不了多少,但可算能回归本心。本章篇幅比较长,将近万字,博主也是自己读源码一步一步跟踪的,所以尽量想描述得通俗易懂一些。

获取源码

首先我们从github上拉取rocketmqd的源码链接到本地,使用idea打开。

源码地址:https://github.com/apache/rocketmq

目前最新版本为:5.2.0

那么我们在idea上切换分支为 release-5.2.0

注:rocketmq5.x与4.x官方改动的东西比较多,尽量使用一直的版本,具体差异可查看官网,这里只对源码逻辑进行分析

总概论

我们知道rocketmq的组成需要四大模块构成,缺一不可

  • nameserver mq注册中心(状态管理)
  • broker mq的服务端(核心)
  • producer 生产者
  • consumer 消费者

本章我们先从应该大家接触最多的生产者开始学习源码吧。

生产者实例

  1. 在idea的rocketmq源码中找到 example 模块,这个模块中都是官方给出的简单案例
  2. 然后找到simple 包下面的 Producer类打开
  3. 然后在producer类中配置自己的mq的地址,topic以及tag就能成功启动生产者并且发送消息

注意:这里成功启动的前提是必须提前启动了mq的nameserver服务和broker服务才能成功,若没有可不用启动,直接跳过看下面源码

源码

根据上面简单生产者实例可知,生产者端的两大核心就是,启动生产者发送消息,分别对应下面两行代码。看似简单的两行其实里面的功能逻辑很强大。

  • producer.start();
    
  • producer.send(msg);

生产者包含4中状态:

  • CREATE_JUST 服务刚刚创建,尚未启动
  • RUNNING 服务运行中
  • SHUTDOWN_ALREADY 服务已关闭
  • START_FAILED 启动出错

按照顺序,我们从 生产者的启动开始

public void start() throws MQClientException {//A-01:设置生产者组名称this.setProducerGroup(withNamespace(this.producerGroup));//A-02:生产者服务启动this.defaultMQProducerImpl.start();//A-03:开启监控和处理同步发送和异步发送操作的守护线程if (this.produceAccumulator != null) {this.produceAccumulator.start();}//A-04:开启消息轨迹和发送机制if (null != traceDispatcher) {try {traceDispatcher.start(this.getNamesrvAddr(), this.getAccessChannel());} catch (MQClientException e) {logger.warn("trace dispatcher start failed ", e);}}
}

A-01:设置生产者组名称

  1. 该方法中顾名思义主要用于设置生产者组的名称
  2. withNamespace()进入该方法发现,其实对生产者组的名称就行各种非空校验和长度校验,最后根据固定格式拼接名称后返回。(对于开源组件大佬,校验方式也是和我们无异的)

A-02:生产者服务启动

该方法为本次的启动核心方法,我们直接深入了解下其内部实现。

方法逻辑太长我们进行分段拆分来解析

public void start(final boolean startFactory) throws MQClientException {switch (this.serviceState) {//B-01:初始化状态case CREATE_JUST:this.serviceState = ServiceState.START_FAILED;//B-02:校验this.checkConfig();//B-03:生产者组名设置if (!this.defaultMQProducer.getProducerGroup().equals(MixAll.CLIENT_INNER_PRODUCER_GROUP)) {this.defaultMQProducer.changeInstanceNameToPID();}//...
B-01:初始化状态

因为现在还是正在启动中,所以状态还是默认未启动状态,那么直接进入第一个case逻辑中,进入后里面把状态至为启动失败,我认为这是一种防御性编码,并且防止未成功启动的生产者被重复启动

B-02:该方法再次对生产者组名称进行校验
B-03:判断是否为默认生产者组名称

        前面可知我们已经成功设置自定义名称,所以直接进入if中

  • changeInstanceNameToPID(),该方法就设置实例名称,进入方法可以看到名称的生成规则,this.instanceName = UtilAll.getPid() + "#" + System.nanoTime();
    当前运行的虚拟机的名称截取拼接上当前纳米时间戳,保证唯一性
public void start(final boolean startFactory) throws MQClientException {/......///B-04:该方法是为了实例化MQClientInstance对象,mq客户端对象实例this.mQClientFactory = MQClientManager.getInstance().getOrCreateMQClientInstance(this.defaultMQProducer, rpcHook);//B-05:注册生产者boolean registerOK = mQClientFactory.registerProducer(this.defaultMQProducer.getProducerGroup(), this);/....../
B-04: 该方法是为了实例化MQClientInstance对象,mq客户端对象实例
  • 内部首先生成一个唯一的clientId,其组成包含ip地址与之前生成的实例名称instanceName组成,然后new 了一个MQClientInstance对象并设置对应属性。
  • 将clientId作为key维护到一个Map对象中,private final ConcurrentMap<String/* clientId */, MQClientInstance> factoryTable;

注:MQClientInstance对象,该对象非常重要,因为生产者和消费者都在使用

进入该对象我们可以发现,里面维护了两个Map集合,就是分别存储当前客户端的生产者和消费者的对象数据

private final ConcurrentMap<String, MQProducerInner> producerTable
private final ConcurrentMap<String, MQConsumerInner> consumerTable

B-05: 该方法就是将当前生产者对象注册到mqClientInstance中的producerTable集合中,并且生产者组名称作为key
public void start(final boolean startFactory) throws MQClientException {switch (this.serviceState) {/....///B-06: 启动相关核心服务以及开启一系列定时任务if (startFactory) {mQClientFactory.start();}/.../
B-06: 启动相关核心服务以及开启一系列定时任务(核心逻辑)
1. 开启请求-响应通道- this.mQClientAPIImpl.start();
2. 开启拉动式服务- this.mQClientAPIImpl.start();
3. 开启负载均衡服务- this.rebalanceService.start();
4. 开启推送服务- this.defaultMQProducer.getDefaultMQProducerImpl().start(false);
  • 这个方法是否有点眼熟,没错这就是我们最开始调用的启动方法A-2,参数传的false,说明上面if代码块中startFactory=false,则不进入B-06的代码块中
  • 并且A-2代码块方法中,因为第一次进入时状态已经从CREATE_JUST变更为START_FAILED,所以也不会再次进入第一个case中
  • 阅读后续代码可知,核心就是调用了 this.mQClientFactory.sendHeartbeatToAllBrokerWithLock(); 向所有Broker服务发送一次心跳(具体后面会详解)
5. 启动各种计划任务- this.startScheduledTask();

所有任务都是使用Executors线程池创建一个单独的的单线程定时任务实现,如下格式

private final ScheduledExecutorService scheduledExecutorService = Executors.newSingleThreadScheduledExecutor(r -> new Thread(r, "MQClientFactoryScheduledThread"));
//....
this.scheduledExecutorService.scheduleAtFixedRate(() -> {try {//业务逻辑} catch (Exception e) {log.error("ScheduledTask fetchNameServerAddr exception", e);}
}, 1000 * 10, 1000 * 60 * 2, TimeUnit.MILLISECONDS);
a. 启动定时任务获取MQ注册中心nameServer的地址- MQClientInstance.this.mQClientAPIImpl.fetchNameServerAddr();

首次启动延迟时间:2s

定时间隔时间:2m

mQClientAPIImpl对象是否眼熟,没错就是上面B-06-1启动的服务,所以该服务必须在任务执行之前启动,查看源码如此

  • 深入方法中会发现其实就是获取地址处理后存储在一个List集合中,为什么使用集合,我认为如果是集群那就就会有多条地址存在。 private final AtomicReference<List<String>> namesrvAddrList = new AtomicReference<>();
  • 继续深入会发现有Netty的身影,用于服务间远程通信,这里不再研究。
  • private final ConcurrentMap<String /* addr */, ChannelWrapper> channelTables;
  • 该Map就是用nameserver地址作为key,而value为ChannelWrapper对象,该对象内部就使用了netty框架 包中的对象,一个地址对应一个通道封装器。但是该逻辑中并没有使用put操作,只是get获取。
b. 定时从nameServer拉取topic信息到本地存储 -                                    MQClientInstance.this.updateTopicRouteInfoFromNameServer();

首次启动延迟时间:10ms

定时间隔时间:30s

  • 深入方法内部可知,其实就是分别对producerTableconsumerTable的map进行操作遍历,取出对象里面的topic名称,由前面B-04中可知,分别用于存储生产者对象消费者对象信息
  • 再将topic名称的set集合进行遍历去远程获取nameserver中的topic的路由详细信息,并将信息存储在另一个map对象中。作用: 用于管理和查询主题的路由信息,帮助生产者和消费者确定消息的发送和接收路径。
  • private final ConcurrentMap<String/* Topic */, TopicRouteData> topicRouteTable = new ConcurrentHashMap<>();
c. 定时清除离线的broker服务并给所有在线的broker发送心跳

        MQClientInstance.this.cleanOfflineBroker(); 清除离线的broker

        MQClientInstance.this.sendHeartbeatToAllBrokerWithLock(); 给所有的broker发送心跳

首次启动延迟时间:1s

定时间隔时间:30s

  • 清除离线的broker,查看源码可知道,大概意思为首先从private final ConcurrentMap<String, HashMap<Long, String>> brokerAddrTable = new ConcurrentHashMap<>(); map中
    • 获取所有broker的地址数据,然后进行遍历,
    • 在遍历中取出 topicRouteTable,该map存放的是topic的对象信息
    • 再对topic map的values进行遍历,取出topic信息对象中存储的对应broker集合,
    • 判断上面的brokerAddrTable中的broker是否在topic维护的broker集合中,没有则清除
d. 定时持久化消费偏移量数据

     MQClientInstance.this.persistAllConsumerOffset();

首次启动延迟时间:10s

定时间隔时间:5s

同样的维护了一个Map对象:

private ConcurrentMap<MessageQueue, ControllableOffset> offsetTable;

key则为消息队列对象

  • 深入源码可知,它的消费者持久化实现方式有三种
    • lite pull
    • mp pull
    • mp push
e. 定时调整消费者消息的线程池数量

    MQClientInstance.this.adjustThreadPool();

首次启动延迟时间:1m

定时间隔时间:1m

public void start(final boolean startFactory) throws MQClientException {switch (this.serviceState) {//...//B-07:初始化topic路由信息、topic訂閲信息以及topic端点映射信息this.initTopicRoute();//B-08:开启定时监测broker故障信息任务this.mqFaultStrategy.startDetector();//...
B-07:初始化topic路由信息、topic訂閲信息以及topic端点映射信息
  • 深入源码可知,首先获取开发者自定义的topic集合,然后分别处理成MQ要求的格式newTopic,然后创建TopicPublishInfo对象,用于存储topic订阅信息newTopic作为key,同样最后放入map中

private final ConcurrentMap<String/* topic */, TopicPublishInfo> topicPublishInfoTable;

  • 查看TopicPublishInfo对象可知,对象里面包含了TopicRouteData对象,我们知道这个对象在上面定时器B-06-5-b中出现过用于存储topic路由信息,并且存储在topicRouteTable map中
  • 所以在本方法中也会通过newTopic去远程从nameserver中拉去TopicRouteData信息,设置到TopicPublishInfo对象中,同样也会对比topic新获取的TopicRouteData与原来定时器存储的topicRouteTable中的是否有变化,有则更新
  • 有变化同时还会更新,上面定时器B-06-5-c中出现的brokerAddrTable map,更新broker的地址信息
  • 同时更新topic端点映射信息-记录每个主题的消息队列与 Broker 之间的映射 
  • private final ConcurrentMap<String/* Topic */, ConcurrentMap<MessageQueue, String/*brokerName*/>> topicEndPointsTable;这是一个嵌套map,因为一个topic可能对应多个broker,那么消息队列也会是对应多个broker, 可以帮助管理和均衡负载,确保消息被分布到不同的 Broker 上
B-08:开启定时监测broker故障信息任务

深入源码可知,里面维护了一个定时任务,定时监测 Broker 的故障详细信息

首次启动延迟时间:3s

定时间隔时间:3s

  • 同时也维护了一个map,用于存储每一个broker的 故障详细信息,包括故障时间、故障持续时间和可用状态

        private final ConcurrentHashMap<String, FaultItem> faultItemTable;

  • 逻辑处理中还会去查询brokerAddrTable中是否还存在当前broker地址信息,不存在则从faultItemTable中移除,然后再去监测broker服务是否可用,若可用则将可用状态 设置为true
public void start(final boolean startFactory) throws MQClientException {//...//B-09:发送心跳给所有的broker服务this.mQClientFactory.sendHeartbeatToAllBrokerWithLock();//B-10:开启定时扫描异步请求响应任务RequestFutureHolder.getInstance().startScheduledTask(this);}
B-09:发送心跳给所有的broker服务

        发送心跳其实在上面定时器B-06-5-c中已经出现过了,但是没有深入了解,那么定时器中既然已经在发送心跳了,为什么生产者启动最后还要发送呢?

  • 定时任务的作用:定时任务确保客户端在运行过程中定期发送心跳,保持与 Broker 的连接。
  • 启动时的心跳:生产者在启动完成时立即发送心跳,以确保初始化成功、快速检测连接状态并更新路由信息。
  • 同样的心跳机制中也维护了一个map, 用于记录和管理每个 Broker 的心跳信息,private final ConcurrentMap<String, Integer> brokerAddrHeartbeatFingerprintTable;
  • 其中value值称为心跳指纹, MQ通过比较当前心跳指纹和上次记录的指纹,可以判断 Broker 是否正常工作
B-10:开启定时扫描异步请求响应任务

        深入源码可知,里面维护了一个定时任务,定时扫描MQ存储的生产者发布的异步请求以及响应的信息,帮助MQ实现异步请求的超时、回调和状态管理,增强系统的异步处理能力。

次启动延迟时间:3s

定时间隔时间:1s

同样的是维护了一个map数据用于存储异步请求以及响应的信息:

private ConcurrentHashMap<String, RequestResponseFuture> requestFutureTable

那么key为请求时生成的唯一标识,value为RequestResponseFuture对象则记录了请求信息、超时时间、响应信息、回调信息等,mq根据记录的信息做出响应的处理。

  • 源码内部逻辑有一个地方就判断了isTimeout是否请求超时,为true则抛出异常

该map requestFutureTable在本次启动中只是使用,具体在什么地方存储的,应该会在后续的生产者发送消息源码中再次出现,本次启动使用到的requestFutureTable应该都是没数据的。日常开发看似只是简单的调用了发送消息的api方法,而mq内部则做了许多复杂的处理来保证消息的可靠性和高可用性

A-03:开启监控和处理同步发送和异步发送操作的守护线程

  • guardThreadForSyncSend.start();
  • guardThreadForAsyncSend.start();

        这些线程中,可以实现具体的监控和处理逻辑,例如检测发送超时、重试失败的发送操作等。 并且这些线程在 JVM 退出时会自动终止

A-04:开启消息轨迹和发送机制

通过收集消息轨迹信息,可以了解消息在 RocketMQ 中的流转路径,帮助系统监控和故障排查。

总结

对于RocketMQ我们都知道生产者会从nameserver中拉取数据,并且会在本地存储,就算nameserver服务意外离线了,也能通过本地保存的数据进行消息通信。那么如何远程拉取数据以及心跳监测如何在本地存储,我想大家通过对上面start启动源码的学习,疑惑都解开了吧。

  • 数据更新以及心跳无非就是通过一系列的定时器在不断请远程请求
  • 本地存储则是使用已 table为后缀命名的Map集合来存储的

对本章源码中遇到的定时器和table进行了整理,方便大家快速记忆


展望

本章内容比较多,博主也是肝了几天才完成,希望对大家都有所收获,下一章我们继续对生产者send消息源码进行学习!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1474003.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Matplotlib Artist Axes

在简介里介绍了很多了&#xff0c;这里补充一点 Axes包含一个属性patch&#xff0c;是Axes对应的方框&#xff0c;可以用来设置Axes的相关属性 ax fig.add_subplot() rect ax.patch # a Rectangle instance rect.set_facecolor(green) Axes有以下方法 Axes helper metho…

MYSQL的简易安装

先下载好安装包 官网&#xff1a;https://www.mysql.com 双击运行进入界面 打开之后将左侧的产品移到右侧 点击使用的产品设置路径 之后一直下一步即可 选择主机类型 同时要记住端口号 设置密码 设置系统服务列表中的服务名称 之后一直下一步就可以了 安装完成记得配置环…

.mkp勒索病毒:深度解析与防范

引言&#xff1a; 在数字化时代&#xff0c;网络安全问题日益严峻&#xff0c;其中勒索病毒作为一种极具破坏性的恶意软件&#xff0c;严重威胁着个人用户和企业机构的数据安全。在众多勒索病毒家族中&#xff0c;.mkp勒索病毒以其强大的加密能力和广泛的传播方式&#xff0c;成…

第二次练习

目录 一、student表的增删改查 1.向student表中添加一条新记录 2. 向student表中添加多条新记录 3.向student表中添加一条新记录 4.更新表&#xff0c;grade 大于90的加0.5 5.删除成绩为空的记录 二、用户权限部分 1、创建一个用户test1使他只能本地登录拥有查询student表的权…

http读书笔记

持久化 HTTP/1.1 和一部分的 HTTP/1.0 想出了 持久连接&#xff08;HTTP Persistent Connections&#xff0c; 也称为 HTTP keep-alive 或 HTTP connection reuse&#xff09; 的方法。 持久连接的特点是&#xff0c; 只要任意一端 没有明确提出断开连接&#xff0c; 则保持 T…

信用卡没逾期就万事大吉了吗?

6月28日&#xff0c;中国人民银行揭晓了《2024年第一季度支付体系概览》&#xff0c;数据显示&#xff0c;截至本季度末&#xff0c;信用卡及借贷合一卡的总量为7.6亿张&#xff0c;与上一季度相比&#xff0c;这一数字微降了0.85个百分点。同时&#xff0c;报告还指出&#xf…

【Unity】unity学习扫盲知识点

1、建议检查下SystemInfo的引用。这个是什么 Unity的SystemInfo类提供了一种获取关于当前硬件和操作系统的信息的方法。这包括设备类型&#xff0c;操作系统&#xff0c;处理器&#xff0c;内存&#xff0c;显卡&#xff0c;支持的Unity特性等。使用SystemInfo类非常简单。它的…

HTML5使用<progress>进度条、<meter>刻度条

1、<progress>进度条 定义进度信息使用的是 progress 标签。它表示一个任务的完成进度&#xff0c;这个进度可以是不确定的&#xff0c;只是表示进度正在进行&#xff0c;但是不清楚还有多少工作量没有完成&#xff0c;也可以用0到某个最大数字&#xff08;如&#xff1…

ctfshow web sql注入 web242--web249

web242 into outfile 的使用 SELECT ... INTO OUTFILE file_name[CHARACTER SET charset_name][export_options]export_options:[{FIELDS | COLUMNS}[TERMINATED BY string]//分隔符[[OPTIONALLY] ENCLOSED BY char][ESCAPED BY char]][LINES[STARTING BY string][TERMINATED…

C++11|包装器

目录 引入 一、function包装器 1.1包装器使用 1.2包装器解决类型复杂 二、bind包装器 引入 在我们学过的回调中&#xff0c;函数指针&#xff0c;仿函数&#xff0c;lambda都可以完成&#xff0c;但他们都有一个缺点&#xff0c;就是类型的推导复杂性&#xff0c;从而会…

aardio —— 今日减bug

打字就减bug 鼠标双击也减bug 看看有多少bug够你减的 使用方法&#xff1a; 1、将资源附件解压缩&#xff0c;里面的文件夹&#xff0c;放到aardio\plugin\plugins 目录 2、aardio 启动插件 → 插件设置 → 选中“今日减bug” → 保存。 3、重启 aardio&#xff0c;等aa…

解决IDEA每次新建项目都需要重新配置maven的问题

每次打开IDEA都要重新配置maven&#xff0c;这是因为在DEA中分为项目设置和全局设置&#xff0c;这个时候我们就需要去到全局中设置maven了。我用的是IntelliJ IDEA 2023.3.4 (Ultimate Edition)&#xff0c;以此为例。 第一步&#xff1a;打开一个空的IDEA&#xff0c;选择左…

起飞,纯本地实时语音转文字!

简介 偶然在 github 上翻到了这个项目 https://github.com/k2-fsa/sherpa-ncnn 在没有互联网连接的情况下使用带有 ncnn 的下一代 Kaldi 进行实时语音识别。支持 iOS、Android、Raspberry Pi、VisionFive2、LicheePi4A等。 也就是说语音转文字可以不再借助网络服务的接口&am…

昇思MindSpore学习笔记4-03生成式--Diffusion扩散模型

摘要&#xff1a; 记录昇思MindSpore AI框架使用DDPM模型给图像数据正向逐步添加噪声&#xff0c;反向逐步去除噪声的工作原理和实际使用方法、步骤。 一、概念 1. 扩散模型Diffusion Models DDPM(denoising diffusion probabilistic model) &#xff08;无&#xff09;条件…

昇思25天学习打卡营第8天|模型权重与 MindIR 的保存加载

目录 导入Python 库和模块 创建神经网络模型 保存和加载模型权重 保存和加载MindIR 导入Python 库和模块 上一章节着重阐述了怎样对超参数予以调整&#xff0c;以及如何开展网络模型的训练工作。在网络模型训练的整个进程当中&#xff0c;事实上我们满怀期望能够留存中间阶段…

眼底图像生成新 SOTA:GeCA模拟生物细胞的演变过程

眼底图像生成新 SOTA&#xff1a;GeCA模拟生物细胞的演变过程 提出背景GeCA 框架生成元胞自动机&#xff1a;从单细胞到生物体的过程生物体从单个像素细胞开始细胞扩散&#xff1a;从细胞演变为生物体通过基因遗传改进逆向采样视网膜疾病分类GeCA 逻辑拆解子解法1&#xff1a;神…

Go高级库存照片源码v5.3

GoStock – 免费和付费库存照片脚本这是一个免费和付费共享高质量库存照片的平台,用户可以上传照片与整个社区和访客分享,并可以通过 PayPal 接收捐款。此外,用户还可以点赞、评论、分享和收藏您最喜欢的照片。 下载 特征: 使用Laravel 10构建订阅系统Stripe 连接渐进式网页…

【Python机器学习】模型评估与改进——分层k折交叉验证

在k折分层验证中&#xff0c;将数据集划分为k折时&#xff0c;从数据的前k分之一开始划分&#xff0c;这可能并不总是一个好主意&#xff0c;例如iris数据集中&#xff1a; from sklearn.datasets import load_irisirisload_iris() print(Iris labels:\n:{}.format(iris.targe…

2.Python学习:数据类型和变量

1.标识符命名规则 只能由数字、字母、下划线组成不能以数字开头不能是关键字&#xff08;如class等python内部已经使用的标识符&#xff09;区分大小写 查看关键字&#xff1a; print(keyword.kwlist)2.数据类型 2.1常见数据类型 2.1.1Number数值型&#xff1a; 整数int&a…

13 - Python网络编程入门

网络编程入门 计算机网络基础 计算机网络是独立自主的计算机互联而成的系统的总称&#xff0c;组建计算机网络最主要的目的是实现多台计算机之间的通信和资源共享。今天计算机网络中的设备和计算机网络的用户已经多得不可计数&#xff0c;而计算机网络也可以称得上是一个“复…