【算法训练-贪心算法】一 买卖股票的最佳时机II

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【贪心算法】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。
在这里插入图片描述

名曲目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

买卖股票的最佳时机II【MID】

难度升级,股票可以反复买卖,不是只买卖一次,还是求最大收益

题干

在这里插入图片描述

解题思路

整体使用贪心算法实现:

  • 对于单独交易日: 设今天价格 p1 、明天价格 p2 ,则今天买入、明天卖出可赚取金额 p2−p1(负值代表亏损)。
  • 对于连续上涨交易日: 设此上涨交易日股票价格分别为 p1,p2,…,pn,则第一天买最后一天卖收益最大,即 pn−p1 ;等价于每天都买卖,即 pn−p1=(p2−p1)+(p3−p2)+…+(pn−pn−1)p_n - p_1=(p_2 - p_1)+(p_3 - p_2)+…+(p_n - p_{n-1})
  • 对于连续下降交易日: 则不买卖收益最大,即不会亏钱。

在这里插入图片描述
遍历整个股票交易日价格列表 price,并执行贪心策略:所有上涨交易日都买卖(赚到所有利润),所有下降交易日都不买卖(永不亏钱)

  1. 设 tmp 为第 i-1 日买入与第 i 日卖出赚取的利润,即 tmp = prices[i] - prices[i - 1] ;
  2. 当该天利润为正 tmp > 0,则将利润加入总利润 profit;当利润为 0 或为负,则直接跳过;
  3. 遍历完成后,返回总利润 profit

代码实现

给出代码实现基本档案

基本数据结构数组
辅助数据结构
算法贪心算法
技巧

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 计算最大收益* @param prices int整型一维数组 股票每一天的价格* @return int整型*/public int maxProfit (int[] prices) {// 1 定义总利润int maxProfit = 0;for (int i = 1; i < prices.length; i++) {// 2 获取当天利润int curProfit = prices[i] - prices[i - 1];// 3 只有当天利润为正值才计入总利润maxProfit = Math.max(curProfit, 0) + maxProfit;}return maxProfit;}
}

复杂度分析

时间复杂度:遍历了一遍数组,所以时间复杂度为O(N)
空间复杂度:没有借助额外空间,空间复杂度为O(1)

拓展知识:动态规划与贪心算法

动态规划

动态规划(Dynamic Programming,简称DP)是一种解决复杂问题的算法设计技术,常用于优化问题和组合问题的求解。它通过将原问题分解成子问题,并保存子问题的解,以避免重复计算,从而提高算法的效率。动态规划通常用于解决具有重叠子问题和最优子结构性质的问题。

动态规划的基本思想可以总结为以下几个步骤:

  1. 定义问题的状态:首先要明确定义问题的状态,这些状态可以用来描述问题的各种情况。

  2. 找到状态转移方程:状态转移方程描述了问题之间的联系,即如何从一个状态转移到另一个状态。这通常涉及到问题的递归关系,通过这个关系可以从较小规模的子问题得到更大规模的问题的解。

  3. 初始化状态:确定初始状态的值,这通常是问题规模最小的情况下的解。

  4. 自底向上或自顶向下求解:动态规划可以采用自底向上(Bottom-Up)或自顶向下(Top-Down)的方式求解问题。自底向上是从最小的状态开始逐步计算,直到得到最终问题的解;自顶向下是从最终问题开始,递归地计算子问题的解,直到达到最小状态。

  5. 根据问题的要求,从状态中找到最终解

动态规划常见的应用领域包括:

  1. 最长公共子序列问题:在两个序列中找到一个最长的共同子序列,用于比较字符串相似性。

  2. 背包问题:在给定一定容量的背包和一组物品的情况下,选择一些物品放入背包,使得物品的总价值最大或总重量不超过背包容量。

  3. 最短路径问题:求解图中两点之间的最短路径,如Dijkstra算法和Floyd-Warshall算法。

  4. 硬币找零问题:给定一组硬币面额和一个目标金额,找到使用最少数量的硬币组合成目标金额。

  5. 斐波那契数列问题:求解斐波那契数列的第n个数,通过动态规划可以避免重复计算。

动态规划是一种强大的问题求解方法,但它并不适用于所有类型的问题。在使用动态规划时,需要仔细分析问题的性质,确保问题具有重叠子问题和最优子结构性质,以确保动态规划算法能够有效地解决问题。

贪心算法

贪心算法(Greedy Algorithm)是一种常用的问题求解策略,通常用于解决最优化问题,如最短路径、最小生成树、背包问题等。贪心算法的基本思想是每一步都选择当前状态下的最优解,而不考虑全局的最优解,希望通过局部最优的选择最终达到全局最优。贪心算法通常是一种高效的方法,但并不是所有问题都适合使用贪心算法,因为有些问题的最优解不一定可以通过贪心选择得到。

贪心算法的一般步骤如下:

  1. 定义问题的优化目标,明确问题的约束条件

  2. 从问题的初始状态开始,通过一系列选择,每次选择局部最优解,更新当前状态

  3. 检查是否满足问题的约束条件和终止条件。如果不满足,则回到第2步继续选择;如果满足,则算法结束。

  4. 对于某些问题,需要证明贪心选择的局部最优解确实能够导致全局最优解,这需要数学证明或者举出反例。

以下是一些常见的问题,可以使用贪心算法解决:

  1. 最小生成树问题:如Kruskal算法和Prim算法用于寻找无向图中的最小生成树。

  2. 最短路径问题:如Dijkstra算法用于寻找图中两点之间的最短路径。

  3. 背包问题:如分数背包问题0/1背包问题,可以使用贪心算法进行求解。

  4. 活动选择问题:如贪心选择活动安排最多的问题,可以使用贪心算法求解。

需要注意的是,并非所有问题都适合使用贪心算法,因为有些问题的最优解可能需要全局搜索或者动态规划等其他算法。因此,在应用贪心算法之前,需要仔细分析问题的特点和性质,以确定贪心算法是否合适。

动态规划与贪心算法区别

动态规划(Dynamic Programming)和贪心算法(Greedy Algorithm)都是常见的问题求解策略,但它们在问题求解时有很大的区别,适用于不同类型的问题和场景。

区别:

  1. 最优子结构性质:

    • 动态规划:动态规划问题通常具有最优子结构性质,即全局最优解可以通过子问题的最优解来构造。动态规划通常涉及到将问题划分为重叠的子问题,然后利用这些子问题的解来构建全局最优解。
    • 贪心算法:贪心算法通常涉及到每一步选择当前状态下的最优解,但不一定具有最优子结构性质。贪心算法通常是通过一系列局部最优选择来达到全局最优,但不能保证一定能够得到全局最优解。
  2. 选择的灵活性:

    • 动态规划:在动态规划中,可以在每个子问题中考虑多种选择,并计算每种选择的代价或价值,然后选择最优的。通常需要一个状态转移方程来描述问题的子结构和递归关系。
    • 贪心算法:贪心算法在每一步都选择当前状态下的最优解,不考虑其他选择的影响。它通常适用于问题具有"贪心选择性质"的情况,即通过局部最优选择能够得到全局最优解。

问题解决场景:

  1. 动态规划适用场景:

    • 当问题的最优解可以通过子问题的最优解来构造时,通常使用动态规划。典型问题包括:
      • 最短路径问题(如Dijkstra算法)
      • 最长公共子序列问题
      • 背包问题(如0/1背包问题)
      • 编辑距离问题
    • 需要存储和重用子问题的解,通常使用表格或数组来实现。
  2. 贪心算法适用场景:

    • 当问题具有贪心选择性质,即通过每一步的局部最优选择能够达到全局最优时,可以使用贪心算法。典型问题包括:
      • 最小生成树问题(如Prim算法和Kruskal算法)
      • 哈夫曼编码问题
      • 活动选择问题
      • 货币找零问题
    • 贪心算法通常更简单和高效,但不能解决所有问题,因为它没有全局的视野。

总之,动态规划和贪心算法是两种不同的问题求解策略,根据问题的特性和要求选择合适的算法非常重要。有些问题可以同时使用这两种策略的思想,即使用贪心算法的局部最优性来设计动态规划的状态转移方程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147305.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【小沐学前端】Node.js实现基于Protobuf协议的UDP通信(UDP/TCP)

文章目录 1、简介1.1 node1.2 Protobuf 2、下载和安装2.1 node2.2 Protobuf2.2.1 安装2.2.2 工具 3、node 代码示例3.1 HTTP3.2 UDP单播3.4 UDP广播 4、Protobuf 代码示例4.1 例子: awesome.proto4.1.1 加载.proto文件方式4.1.2 加载.json文件方式4.1.3 加载.js文件方式 4.2 例…

idea Springboot在线商城系统VS开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 在线商城系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有 完整的源代码和数据库&…

多目标平衡优化器黏菌算法(MOEOSMA)求解CEC2020多模式多目标优化

多目标平衡优化器黏菌算法&#xff08;MOEOSMA&#xff09;比现有的多目标黏菌算法具有更好的优化性能。在MOEOSMA中&#xff0c;动态系数用于调整勘探和开采趋势。采用精英存档机制来促进算法的收敛性。使用拥挤距离法来保持Pareto前沿的分布。采用平衡池策略模拟黏菌的协同觅…

Redis持久化、主从与哨兵架构详解

文章目录 一、RDB、AOF及混合持久化详解RDB快照&#xff08;snapshot&#xff09;bgsave的写时复制(COW)机制save与bgsave对比&#xff1a; AOF&#xff08;append-only file&#xff09;AOF重写 RDB 和 AOF &#xff0c;我应该用哪一个&#xff1f;Redis 4.0 混合持久化 二、R…

IDEA的使用

文章目录 1.IDEA配置1.1 idea界面说明1.2 git1.3 JDK1.4 maven1.5 Tomcat1.6 idea设置编码格式1.7 vscodenodejs1.8 windows下安装redis 2. IDEA问题2.1 setAttribute方法爆红2.2 idea cannot download sources解决办法2.3 springboot项目跑起来不停run 3. vscode3.1 vscode显示…

springcloud:四、nacos介绍+启动+服务分级存储模型/集群+NacosRule负载均衡

nacos介绍 nacos是阿里巴巴提供的SpringCloud的一个组件&#xff0c;算是eureka的替代品。 nacos启动 安装过程这里不再赘述&#xff0c;相关安装或启动的问题可以见我的另一篇博客&#xff1a; http://t.csdn.cn/tcQ76 单价模式启动命令&#xff1a;进入bin目录&#xff0…

Ant-Design-Vue:a-range-picker组件国际化配置

在使用Ant-Design-Vue中的时间范围选择器开发个人项目时&#xff0c;发现默认显示为英文。如何解决呢&#xff1f; date-picker分类 Antd-Vue提供了DatePicker、MonthPicker、RangePicker、WeekPicker 几种类型的时间选择器&#xff0c;分别用于选择日期、月份、日期范围、周范…

win10系统任务栏图标变成白色的解决办法

我平时都是用滴答清单进行管理这个自己的日程代办的&#xff0c;但是今天打开的时候发现这个快捷方式突然变成纯白色的了&#xff0c;重启电脑之后&#xff0c;这个图标的样式仍然没有变化。上网查找解决办法之后&#xff0c;终于搞好了&#xff0c;于是就有了下面的教程。 为什…

Android studio “Layout Inspector“工具在Android14 userdebug设备无法正常使用

背景描述 做rom开发的都知道&#xff0c;“Layout Inspector”和“Attach Debugger to Android Process”是studio里很好用的工具&#xff0c;可以用来查看布局、调试系统进程&#xff08;比如setting、launcher、systemui&#xff09;。 问题描述 最进刚开始一个Android 14…

(Note)机器学习面试题

机器学习 1.两位同事从上海出发前往深圳出差&#xff0c;他们在不同时间出发&#xff0c;搭乘的交通工具也不同&#xff0c;能准确描述两者“上海到深圳”距离差别的是&#xff1a; A.欧式距离 B.余弦距离 C.曼哈顿距离 D.切比雪夫距离 S:D 1. 欧几里得距离 计算公式&#x…

机器学习之SGD, Batch, and Mini Batch的简单介绍

文章目录 总述SGD(Stochastic Gradient Descent)(随机梯度下降&#xff09;Batch &#xff08;批量&#xff09;mini Batch (迷你批量&#xff09; 总述 SGD, Batch, and Mini Batch是可用于神经网络的监督学习计算权重更新的方案&#xff0c;即∆wij。 SGD(Stochastic Gradi…

【STM32】IAP升级03关闭总中断,检测栈顶指针

IAP升级方法 IAP升级时需要关闭总中断 TM32在使用时有时需要禁用全局中断&#xff0c;比如MCU在升级过程中需禁用外部中断&#xff0c;防止升级过程中外部中断触发导致升级失败。 ARM MDK中提供了如下两个接口来禁用和开启总中断&#xff1a; __disable_irq(); // 关闭总中…

emacs怎么安装插件

2023年9月26日&#xff0c;周二下午 不得不说&#xff0c;emacs安装插件确实要比vim要方便 虽然我曾经说过要只用vim&#xff0c;但vim安装插件起来太麻烦了 目录 Linux下Emacs的配置文件位置包管理器elpa怎么给elpa换源罗列可安装的插件怎么搜索插件怎么安装插件配置插件 L…

什么是FOSS

FOSS 是指 自由和开放源码软件(Free and Open Source Software)。这并不意味着软件是免费的。它意味着软件的源代码是开放的&#xff0c;任何人都可以自由使用、研究和修改代码。这个原则允许人们像一个社区一样为软件的开发和改进做出贡献。

CentOS密码重置

背景&#xff1a; 我有一个CentOS虚拟机&#xff0c;但是密码忘记了&#xff0c;偶尔记起可以重置密码&#xff0c;于是今天尝试记录一下&#xff0c;又因为我最近记性比较差&#xff0c;所以必须要记录一下。 过程&#xff1a; 1、在引导菜单界面&#xff08;grub&#xff…

如何实现电脑语音输入功能?

现在的手机都具备语音输入功能&#xff0c;并且识别率非常高&#xff0c;语音输入是目前最快速的文字输入方式&#xff0c;但是电脑上却无语音输入的功能&#xff0c;那么如何实现在电脑端也可进行语音输入的梦想呢&#xff1f;现在介绍一款小工具“书剑电脑语音输入法”&#…

java并发编程 守护线程 用户线程 main

经常使用线程&#xff0c;没有对守护线程和用户线程的区别做彻底了解 下面写4个例子来验证一下 源码如下 /* Whether or not the thread is a daemon thread. */ private boolean daemon false;/*** Marks this thread as either a {linkplain #isDaemon daemon} thread*…

Python|OpenCV-如何给目标图像添加边框(7)

前言 本文是该专栏的第7篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。 在使用opencv处理图像的时候,会不可避免的对图像的一些具体区域进行一些操作。比如说,想要给目标图像创建一个围绕图像的边框。简单的来说,就是在图片的周围再填充一个粗线框。具体效果,…

OpenCV实现视频的读取、显示、保存

目录 1&#xff0c;从文件中读取视频并播放 1.2代码实现 1.3效果展示 2&#xff0c;保存视频 2.1 代码实现 2.2 结果展示 1&#xff0c;从文件中读取视频并播放 在OpenCV中我们需要获取一个视频&#xff0c;需要创建一个VideoCapture对象,指定你要读取的视频文件&am…

uni-app 实现凸起的 tabbar 底部导航栏

效果图 在 pages.json 中设置隐藏自带的 tabbar 导航栏 "custom": true, // 开启自定义tabBar(不填每次原来的tabbar在重新加载时都回闪现) 新建一个 custom-tabbar.vue 自定义组件页面 custom-tabbar.vue <!-- 自定义底部导航栏 --> <template><v…