代码随想录算法训练营第71天:路径算法[1]

代码随想录算法训练营第71天:路径算法

Bellman_ford 算法精讲

卡码网:94. 城市间货物运输 I(opens new window)

题目描述

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。

权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。

如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。

城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。

负权回路是指一系列道路的总权值为负,这样的回路使得通过反复经过回路中的道路,理论上可以无限地减少总成本或无限地增加总收益。

输入描述

第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。

接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v(单向图)。

输出描述

如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 “unconnected”。

输入示例:

6 7
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5

#思路

本题依然是单源最短路问题,求 从 节点1 到节点n 的最小费用。 但本题不同之处在于 边的权值是有负数了

从 节点1 到节点n 的最小费用也可以是负数,费用如果是负数 则表示 运输的过程中 政府补贴大于运输成本。

在求单源最短路的方法中,使用dijkstra 的话,则要求图中边的权值都为正数。

我们在 dijkstra朴素版 中专门有讲解:为什么有边为负数 使用dijkstra就不行了。

本题是经典的带负权值的单源最短路问题,此时就轮到Bellman_ford登场了,接下来我们来详细介绍Bellman_ford 算法 如何解决这类问题。

该算法是由 R.Bellman 和L.Ford 在20世纪50年代末期发明的算法,故称为Bellman_ford算法。

Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路

#什么叫做松弛

看到这里,估计大家都比较晕了,为什么是 n-1 次,那“松弛”这两个字究竟是个啥意思?

我们先来说什么是 “松弛”。

《算法四》里面把这个操作叫做 “放松”, 英文版里叫做 “relax the edge”

所以大家翻译过来,就是 “放松” 或者 “松弛” 。

但《算法四》没有具体去讲这个 “放松” 究竟是个啥? 网上很多题解也没有讲题解里的 “松弛这条边,松弛所有边”等等 里面的 “松弛” 究竟是什么意思?

这里我给大家举一个例子,每条边有起点、终点和边的权值。例如一条边,节点A 到 节点B 权值为value,如图:

minDist[B] 表示 到达B节点 最小权值,minDist[B] 有哪些状态可以推出来?

状态一: minDist[A] + value 可以推出 minDist[B] 状态二: minDist[B]本身就有权值 (可能是其他边链接的节点B 例如节点C,以至于 minDist[B]记录了其他边到minDist[B]的权值)

minDist[B] 应为如何取舍。

本题我们要求最小权值,那么 这两个状态我们就取最小的

if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value

也就是说,如果 通过 A 到 B 这条边可以获得更短的到达B节点的路径,即如果 minDist[B] > minDist[A] + value​,那么我们就更新 minDist[B] = minDist[A] + value​ ,这个过程就叫做 “松弛” 。

以上讲了这么多,其实都是围绕以下这句代码展开:

if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value

这句代码就是 Bellman_ford算法的核心操作

以上代码也可以这么写:minDist[B] = min(minDist[A] + value, minDist[B])

如果大家看过代码随想录的动态规划章节,会发现 无论是背包问题还是子序列问题,这段代码(递推公式)出现频率非常高的。

其实 Bellman_ford算法 也是采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。

(如果理解不了动态规划的思想也无所谓,理解我上面讲的松弛操作就好)

那么为什么是 n - 1次 松弛呢

这里要给大家模拟一遍 Bellman_ford 的算法才行,接下来我们来看看对所有边松弛 n - 1 次的操作是什么样的。

我们依然使用minDist数组来表达 起点到各个节点的最短距离,例如minDist[3] = 5 表示起点到达节点3 的最小距离为5

#模拟过程

初始化过程。

起点为节点1, 起点到起点的距离为0,所以 minDist[1] 初始化为0

如图:

其他节点对应的minDist初始化为max,因为我们要求最小距离,那么还没有计算过的节点 默认是一个最大数,这样才能更新最小距离。

对所有边 进行第一次松弛: (什么是松弛,在上面我已经详细讲过)

以示例给出的所有边为例:

5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5

接下来我们来松弛一遍所有的边。

边:节点5 -> 节点6,权值为-2 ,minDist[5] 还是默认数值max,所以不能基于 节点5 去更新节点6,如图:

(在复习一下,minDist[5] 表示起点到节点5的最短距离)

边:节点1 -> 节点2,权值为1 ,minDist[2] > minDist[1] + 1 ,更新 minDist[2] = minDist[1] + 1 = 0 + 1 = 1 ,如图:

边:节点5 -> 节点3,权值为1 ,minDist[5] 还是默认数值max,所以不能基于节点5去更新节点3 如图:

边:节点2 -> 节点5,权值为2 ,minDist[5] > minDist[2] + 2 (经过上面的计算minDist[2]已经不是默认值,而是 1),更新 minDist[5] = minDist[2] + 2 = 1 + 2 = 3 ,如图:

边:节点2 -> 节点4,权值为-3 ,minDist[4] > minDist[2] + (-3),更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2 ,如图:

边:节点4 -> 节点6,权值为4 ,minDist[6] > minDist[4] + 4,更新 minDist[6] = minDist[4] + 4 = -2 + 4 = 2

边:节点1 -> 节点3,权值为5 ,minDist[3] > minDist[1] + 5,更新 minDist[3] = minDist[1] + 5 = 0 + 5 = 5 ,如图:


以上是对所有边进行一次松弛之后的结果。

那么需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢?

对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离

上面的距离中,我们得到里 起点达到 与起点一条边相邻的节点2 和 节点3 的最短距离,分别是 minDist[2] 和 minDist[3]

这里有录友疑惑了 minDist[3] = 5,分明不是 起点到达 节点3 的最短距离,节点1 -> 节点2 -> 节点5 -> 节点3 这条路线 距离才是4。

注意我上面讲的是 对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离,这里 说的是 一条边相连的节点。

与起点(节点1)一条边相邻的节点,到达节点2 最短距离是 1,到达节点3 最短距离是5。

而 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线 是 与起点 三条边相连的路线了。

所以对所有边松弛一次 能得到 与起点 一条边相连的节点最短距离。

那对所有边松弛两次 可以得到与起点 两条边相连的节点的最短距离。

那对所有边松弛三次 可以得到与起点 三条边相连的节点的最短距离,这个时候,我们就能得到到达节点3真正的最短距离,也就是 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线。

那么再回归刚刚的问题,需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢

节点数量为n,那么起点到终点,最多是 n-1 条边相连。

那么无论图是什么样的,边是什么样的顺序,我们对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。

其实也同时计算出了,起点 到达 所有节点的最短距离,因为所有节点与起点连接的边数最多也就是 n-1 条边。

截止到这里,Bellman_ford 的核心算法思路,大家就了解的差不多了。

共有两个关键点。

  • “松弛”究竟是个啥?
  • 为什么要对所有边松弛 n - 1 次 (n为节点个数) ?

那么Bellman_ford的解题解题过程其实就是对所有边松弛 n-1 次,然后得出得到终点的最短路径。

#代码

理解上面讲解的内容,代码就更容易写了,本题代码如下:(详细注释)

#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid;// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});}
int start = 1;  // 起点
int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次
for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛
int from = side[0]; // 边的出发点
int to = side[1]; // 边的到达点
int price = side[2]; // 边的权值
// 松弛操作 
// minDist[from] != INT_MAX 防止从未计算过的节点出发
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) { 
minDist[to] = minDist[from] + price;  
}
}
}
if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径}
  • 时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
  • 空间复杂度: O(N) ,即 minDist 数组所开辟的空间

关于空间复杂度,可能有录友疑惑,代码中数组grid不也开辟空间了吗? 为什么只算minDist数组的空间呢?

grid数组是用来存图的,这是题目描述中必须要使用的空间,而不是我们算法所使用的空间。

我们在讲空间复杂度的时候,一般都是说,我们这个算法所用的空间复杂度。

#拓展

有录友可能会想,那我 松弛 n 次,松弛 n + 1次,松弛 2 * n 次会怎么样?

其实没啥影响,结果不会变的,因为 题目中说了 “同时保证道路网络中不存在任何负权回路” 也就是图中没有 负权回路(在有向图中出现有向环 且环的总权值为负数)。

那么我们只要松弛 n - 1次 就一定能得到结果,没必要在松弛更多次了。

这里有疑惑的录友,可以加上打印 minDist数组 的日志,尝试一下,看看松弛 n 次会怎么样。

你会发现 松弛 大于 n - 1次,minDist数组 就不会变化了。

这里我给出打印日志的代码:

#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid;// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});}
int start = 1;  // 起点
int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次
for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛
int from = side[0]; // 边的出发点
int to = side[1]; // 边的到达点
int price = side[2]; // 边的权值
// 松弛操作
// minDist[from] != INT_MAX 防止从未计算过的节点出发
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) {
minDist[to] = minDist[from] + price;
}
}
cout << "对所有边松弛 " << i << "次" << endl;
for (int k = 1; k <= n; k++) {
cout << minDist[k] << " ";
}
cout << endl;
}
if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径}

通过打日志,大家发现,怎么对所有边进行第二次松弛以后结果就 不再变化了,那根本就不用松弛 n - 1 ?

这是本题的样例的特殊性, 松弛 n-1 次 是保证对任何图 都能最后求得到终点的最小距离。

如果还想不明白 我再举一个例子,用以下测试用例再跑一下。

6 5
5 6 1
4 5 1
3 4 1
2 3 1
1 2 1

打印结果:

对所有边松弛 1次
0 1 2147483647 2147483647 2147483647 2147483647
对所有边松弛 2次
0 1 2 2147483647 2147483647 2147483647
对所有边松弛 3次
0 1 2 3 2147483647 2147483647
对所有边松弛 4次
0 1 2 3 4 2147483647
对所有边松弛 5次
0 1 2 3 4 5

你会发现到 n-1 次 才打印出最后的最短路结果。

关于上面的讲解,大家一定要多写代码去实验,验证自己的想法。

至于 负权回路 ,我在下一篇会专门讲解这种情况,大家有个印象就好

#总结

Bellman_ford 是可以计算 负权值的单源最短路算法。

其算法核心思路是对 所有边进行 n-1 次 松弛。

弄清楚 什么是 松弛? 为什么要 n-1 次? 对理解Bellman_ford 非常重要。

Bellman_ford 队列优化算法(又名SPFA)

卡码网:94. 城市间货物运输 I(opens new window)

题目描述

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。

权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。

如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。

城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。

负权回路是指一系列道路的总权值为负,这样的回路使得通过反复经过回路中的道路,理论上可以无限地减少总成本或无限地增加总收益。

输入描述

第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。

接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v(单向图)。

输出描述

如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 “unconnected”。

输入示例:

6 7
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5

#背景

本题我们来系统讲解 Bellman_ford 队列优化算法 ,也叫SPFA算法(Shortest Path Faster Algorithm)。

SPFA的称呼来自 1994年西南交通大学段凡丁的论文,其实Bellman_ford 提出后不久 (20世纪50年代末期) 就有队列优化的版本,国际上不承认这个算法是是国内提出的。 所以国际上一般称呼 该算法为 Bellman_ford 队列优化算法(Queue improved Bellman-Ford)

大家知道以上来历,知道 SPFA 和 Bellman_ford 队列优化算法 指的都是一个算法就好。

如果大家还不够了解 Bellman_ford 算法,强烈建议按照《代码随想录》的顺序学习,否则可能看不懂下面的讲解。

大家可以发现 Bellman_ford 算法每次松弛 都是对所有边进行松弛。

但真正有效的松弛,是基于已经计算过的节点在做的松弛。

给大家举一个例子:

本图中,对所有边进行松弛,真正有效的松弛,只有松弛 边(节点1->节点2) 和 边(节点1->节点5) 。

而松弛 边(节点4->节点6) ,边(节点5->节点3)等等 都是无效的操作,因为 节点4 和 节点 5 都是没有被计算过的节点。

所以 Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。

只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了

基于以上思路,如何记录 上次松弛的时候更新过的节点呢?

用队列来记录。(其实用栈也行,对元素顺序没有要求)

#模拟过程

接下来来举例这个队列是如何工作的。

以示例给出的所有边为例:

5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5

我们依然使用minDist数组来表达 起点到各个节点的最短距离,例如minDist[3] = 5 表示起点到达节点3 的最小距离为5

初始化,起点为节点1, 起点到起点的最短距离为0,所以minDist[1] 为 0。 将节点1 加入队列 (下次松弛从节点1开始)


从队列里取出节点1,松弛节点1 作为出发点连接的边(节点1 -> 节点2)和边(节点1 -> 节点3)

边:节点1 -> 节点2,权值为1 ,minDist[2] > minDist[1] + 1 ,更新 minDist[2] = minDist[1] + 1 = 0 + 1 = 1 。

边:节点1 -> 节点3,权值为5 ,minDist[3] > minDist[1] + 5,更新 minDist[3] = minDist[1] + 5 = 0 + 5 = 5。

将节点2、节点3 加入队列,如图:


从队列里取出节点2,松弛节点2 作为出发点连接的边(节点2 -> 节点4)和边(节点2 -> 节点5)

边:节点2 -> 节点4,权值为1 ,minDist[4] > minDist[2] + (-3) ,更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2 。

边:节点2 -> 节点5,权值为2 ,minDist[5] > minDist[2] + 2 ,更新 minDist[5] = minDist[2] + 2 = 1 + 2 = 3 。

将节点4,节点5 加入队列,如图:


从队列里出去节点3,松弛节点3 作为出发点连接的边。

因为没有从节点3作为出发点的边,所以这里就从队列里取出节点3就好,不用做其他操作,如图:


从队列中取出节点4,松弛节点4作为出发点连接的边(节点4 -> 节点6)

边:节点4 -> 节点6,权值为4 ,minDist[6] > minDist[4] + 4,更新 minDist[6] = minDist[4] + 4 = -2 + 4 = 2 。

将节点6加入队列

如图:


从队列中取出节点5,松弛节点5作为出发点连接的边(节点5 -> 节点3),边(节点5 -> 节点6)

边:节点5 -> 节点3,权值为1 ,minDist[3] > minDist[5] + 1 ,更新 minDist[3] = minDist[5] + 1 = 3 + 1 = 4

边:节点5 -> 节点6,权值为-2 ,minDist[6] > minDist[5] + (-2) ,更新 minDist[6] = minDist[5] + (-2) = 3 - 2 = 1

如图:

因为节点3 和 节点6 都曾经加入过队列,不用重复加入,避免重复计算。

在代码中我们可以用一个数组 visited 来记录入过队列的元素,加入过队列的元素,不再重复入队列。


从队列中取出节点6,松弛节点6 作为出发点连接的边。

节点6作为终点,没有可以出发的边。

所以直接从队列中取出,如图:


这样我们就完成了基于队列优化的bellman_ford的算法模拟过程。

大家可以发现 基于队列优化的算法,要比bellman_ford 算法 减少很多无用的松弛情况,特别是对于边数众多的大图 优化效果明显。

了解了大体流程,我们再看代码应该怎么写。

在上面模拟过程中,我们每次都要知道 一个节点作为出发点连接了哪些节点。

如果想方便知道这些数据,就需要使用邻接表来存储这个图,如果对于邻接表不了解的话,可以看 kama0047.参会dijkstra堆 中 图的存储 部分。

整体代码如下:

#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;struct Edge { //邻接表
int to;  // 链接的节点
int val; // 边的权重Edge(int t, int w): to(t), val(w) {}  // 构造函数
};int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<list<Edge>> grid(n + 1); // 邻接表// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1;  // 起点
int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;queue<int> que;
que.push(start); // 队列里放入起点while (!que.empty()) {int node = que.front(); que.pop();for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int value = edge.val;
if (minDist[to] > minDist[from] + value) { // 开始松弛
minDist[to] = minDist[from] + value;
que.push(to);
}
}}if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径
}

#效率分析

队列优化版Bellman_ford 的时间复杂度 并不稳定,效率高低依赖于图的结构。

例如 如果是一个双向图,且每一个节点和所有其他节点都相连的话,那么该算法的时间复杂度就接近于 Bellman_ford 的 O(N * E) N 为节点数量,E为边的数量。

在这种图中,每一个节点都会重复加入队列 n - 1次,因为 这种图中 每个节点 都有 n-1 条指向该节点的边,每条边指向该节点,就需要加入一次队列。(如果这里看不懂,可以在重温一下代码逻辑)

至于为什么 双向图且每一个节点和所有其他节点都相连的话,每个节点 都有 n-1 条指向该节点的边, 我再来举个例子,如图:

(opens new window)

图中 每个节点都与其他所有节点相连,节点数n 为 4,每个节点都有3条指向该节点的边,即入度为3。

n为其他数值的时候,也是一样的。

当然这种图是比较极端的情况,也是最稠密的图。

所以如果图越稠密,则 SPFA的效率越接近与 Bellman_ford。

反之,图越稀疏,SPFA的效率就越高。

一般来说,SPFA 的时间复杂度为 O(K * N) K 为不定值,因为 节点需要计入几次队列取决于 图的稠密度。

如果图是一条线形图且单向的话,每个节点的入度为1,那么只需要加入一次队列,这样时间复杂度就是 O(N)。

所以 SPFA 在最坏的情况下是 O(N * E),但 一般情况下 时间复杂度为 O(K * N)。

尽管如此,以上分析都是 理论上的时间复杂度分析

并没有计算 出队列 和 入队列的时间消耗。 因为这个在不同语言上 时间消耗也是不一定的。

以C++为例,以下两段代码理论上,时间复杂度都是 O(n) :

for (long long i = 0; i < n; i++) {
k++;
}
for (long long i = 0; i < n; i++) {
que.push(i);
que.front();
que.pop();
}

在 MacBook Pro (13-inch, M1, 2020) 机器上分别测试这两段代码的时间消耗情况:

  • n = 10^4,第一段代码的时间消耗:1ms,第二段代码的时间消耗: 4 ms
  • n = 10^5,第一段代码的时间消耗:1ms,第二段代码的时间消耗: 13 ms
  • n = 10^6,第一段代码的时间消耗:4ms,第二段代码的时间消耗: 59 ms
  • n = 10^7,第一段代码的时间消耗: 24ms,第二段代码的时间消耗: 463 ms
  • n = 10^8,第一段代码的时间消耗: 135ms,第二段代码的时间消耗: 4268 ms

在这里就可以看出 出队列和入队列 其实也是十分耗时的。

SPFA(队列优化版Bellman_ford) 在理论上 时间复杂度更胜一筹,但实际上,也要看图的稠密程度,如果 图很大且非常稠密的情况下,虽然 SPFA的时间复杂度接近Bellman_ford,但实际时间消耗 可能是 SPFA耗时更多。

针对这种情况,我在后面题目讲解中,会特别加入稠密图的测试用例来给大家讲解。

#拓展

这里可能有录友疑惑,while (!que.empty())​ 队里里 会不会造成死循环? 例如 图中有环,这样一直有元素加入到队列里?

其实有环的情况,要看它是 正权回路 还是 负权回路。

题目描述中,已经说了,本题没有 负权回路 。

如图:

正权回路 就是有环,但环的总权值为正数。

在有环且只有正权回路的情况下,即使元素重复加入队列,最后,也会因为 所有边都松弛后,节点数值(minDist数组)不在发生变化了 而终止。

(而且有重复元素加入队列是正常的,多条路径到达同一个节点,节点必要要选择一个最短的路径,而这个节点就会重复加入队列进行判断,选一个最短的)

在0094.城市间货物运输I 中我们讲过对所有边 最多松弛 n -1 次,就一定可以求出所有起点到所有节点的最小距离即 minDist数组。

即使再松弛n次以上, 所有起点到所有节点的最小距离(minDist数组) 不会再变了。 (这里如果不理解,建议认真看0094.城市间货物运输I讲解)

所以本题我们使用队列优化,有元素重复加入队列,也会因为最后 minDist数组 不会在发生变化而终止。

节点再加入队列,需要有松弛的行为, 而 每个节点已经都计算出来 起点到该节点的最短路径,那么就不会有 执行这个判断条件if (minDist[to] > minDist[from] + value)​,从而不会有新的节点加入到队列。

但如果本题有 负权回路,那情况就不一样了,我在下一题目讲解中,会重点讲解 负权回路 带来的变化。

bellman_ford之判断负权回路

卡码网:95. 城市间货物运输 II(opens new window)

【题目描述】

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;

权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

然而,在评估从城市 1 到城市 n 的所有可能路径中综合政府补贴后的最低运输成本时,存在一种情况:图中可能出现负权回路

负权回路是指一系列道路的总权值为负,这样的回路使得通过反复经过回路中的道路,理论上可以无限地减少总成本或无限地增加总收益。

为了避免货物运输商采用负权回路这种情况无限的赚取政府补贴,算法还需检测这种特殊情况。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。同时能够检测并适当处理负权回路的存在。

城市 1 到城市 n 之间可能会出现没有路径的情况

【输入描述】

第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。

接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v。

【输出描述】

如果没有发现负权回路,则输出一个整数,表示从城市 1 到城市 n 的最低运输成本(包括政府补贴)。

如果该整数是负数,则表示实现了盈利。如果发现了负权回路的存在,则输出 “circle”。如果从城市 1 无法到达城市 n,则输出 “unconnected”。

输入示例

4 4
1 2 -1
2 3 1
3 1 -1
3 4 1

输出示例

circle

#思路

本题是 kama94.城市间货物运输I 延伸题目。

本题是要我们判断 负权回路,也就是图中出现环且环上的边总权值为负数。

如果在这样的图中求最短路的话, 就会在这个环里无限循环 (也是负数+负数 只会越来越小),无法求出最短路径。

所以对于 在有负权值的图中求最短路,都需要先看看这个图里有没有负权回路。

接下来我们来看 如何使用 bellman_ford 算法来判断 负权回路。

在 kama94.城市间货物运输I 中 我们讲了 bellman_ford 算法的核心就是一句话:对 所有边 进行 n-1 次松弛。 同时文中的 【拓展】部分, 我们也讲了 松弛n次以上 会怎么样?

在没有负权回路的图中,松弛 n 次以上 ,结果不会有变化。

但本题有 负权回路,如果松弛 n 次,结果就会有变化了,因为 有负权回路 就是可以无限最短路径(一直绕圈,就可以一直得到无限小的最短距离)。

那么每松弛一次,都会更新最短路径,所以结果会一直有变化。

(如果对于 bellman_ford 不了解的录友,建议详细看这里:kama94.城市间货物运输I)

以上为理论分析,接下来我们再画图举例。

我们拿题目中示例来画一个图:

图中 节点1 到 节点4 的最短路径是多少(题目中的最低运输成本) (注意边可以为负数的)

节点1 -> 节点2 -> 节点3 -> 节点4,这样的路径总成本为 -1 + 1 + 1 = 1

而图中有负权回路:

那么我们在负权回路中多绕一圈,我们的最短路径 是不是就更小了 (也就是更低的运输成本)

节点1 -> 节点2 -> 节点3 -> 节点1 -> 节点2 -> 节点3 -> 节点4,这样的路径总成本 (-1) + 1 + (-1) + (-1) + 1 + (-1) + 1 = -1

如果在负权回路多绕两圈,三圈,无穷圈,那么我们的总成本就会无限小, 如果要求最小成本的话,你会发现本题就无解了。

在 bellman_ford 算法中,松弛 n-1 次所有的边 就可以求得 起点到任何节点的最短路径,松弛 n 次以上,minDist数组(记录起到到其他节点的最短距离)中的结果也不会有改变 (如果对 bellman_ford 算法 不了解,也不知道 minDist 是什么,建议详看上篇讲解kama94.城市间货物运输I)

而本题有负权回路的情况下,一直都会有更短的最短路,所以 松弛 第n次,minDist数组 也会发生改变。

那么解决本题的 核心思路,就是在 kama94.城市间货物运输I 的基础上,再多松弛一次,看minDist数组 是否发生变化。

代码和 kama94.城市间货物运输I 基本是一样的,如下:(关键地方已注释)

#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid;for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});}
int start = 1;  // 起点
int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
bool flag = false;
for (int i = 1; i <= n; i++) { // 这里我们松弛n次,最后一次判断负权回路
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
if (i < n) {
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
} else { // 多加一次松弛判断负权回路
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) flag = true;}
}}if (flag) cout << "circle" << endl;
else if (minDist[end] == INT_MAX) {
cout << "unconnected" << endl;
} else {
cout << minDist[end] << endl;
}
}
  • 时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
  • 空间复杂度: O(N) ,即 minDist 数组所开辟的空间

#拓展

本题可不可 使用 队列优化版的bellman_ford(SPFA)呢?

上面的解法中,我们对所有边松弛了n-1次后,在松弛一次,如果出现minDist出现变化就判断有负权回路。

如果使用 SPFA 那么节点都是进队列的,那么节点进入队列几次后 足够判断该图是否有负权回路呢?

在 0094.城市间货物运输I-SPFA 中,我们讲过 在极端情况下,即:所有节点都与其他节点相连,每个节点的入度为 n-1 (n为节点数量),所以每个节点最多加入 n-1 次队列。

那么如果节点加入队列的次数 超过了 n-1次 ,那么该图就一定有负权回路。

所以本题也是可以使用 SPFA 来做的。 代码如下:

#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;struct Edge { //邻接表
int to;  // 链接的节点
int val; // 边的权重Edge(int t, int w): to(t), val(w) {}  // 构造函数
};int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<list<Edge>> grid(n + 1); // 邻接表// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1;  // 起点
int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;queue<int> que;
que.push(start); // 队列里放入起点 vector<int> count(n+1, 0); // 记录节点加入队列几次
count[start]++;bool flag = false;
while (!que.empty()) {int node = que.front(); que.pop();for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int value = edge.val;
if (minDist[to] > minDist[from] + value) { // 开始松弛
minDist[to] = minDist[from] + value;
que.push(to);
count[to]++; 
if (count[to] == n) {// 如果加入队列次数超过 n-1次 就说明该图与负权回路
flag = true;
while (!que.empty()) que.pop();
break;
}
}
}
}if (flag) cout << "circle" << endl;
else if (minDist[end] == INT_MAX) {
cout << "unconnected" << endl;
} else {
cout << minDist[end] << endl;
}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1472456.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

笔记本休眠后自动关闭所有程序

关于主动进入休眠后&#xff0c;笔记本过一晚第二天会关闭所有程序&#xff0c;开始还以为&#xff0c;笔记本没电了&#xff0c;或者公司停电了导致笔记本没电关机&#xff0c;排查后发现不是。。。 原因是笔记本电脑默认设置休眠20分钟后自动关闭硬盘。 解决方案&#xff1a…

抖音短视频矩阵系统源代码开发-oem搭建

抖音矩阵号管理系统是一个综合性平台&#xff0c;旨在为企业、机构和个人提供全面的抖音账号管理服务。系统具备以下核心功能&#xff1a; 1. 用户管理&#xff1a;本系统支持多用户操作&#xff0c;允许管理员为每个用户分配专属的抖音矩阵号&#xff0c;实现个性化管理。 2.…

一站式采购!麒麟信安CentOS安全加固套件上架华为云云商店

近日&#xff0c;麒麟信安CentOS安全加固套件正式上架华为云云商店&#xff0c;用户可登录华为云官网搜索“CentOS安全加固”直接采购&#xff0c;一站式获取所需资源。 麒麟信安CentOS安全加固套件已上架华为云 https://marketplace.huaweicloud.com/contents/9fe76553-8d87-…

山东益康,聚焦绿葆医院场景媒体,用爱服务人类健康

山东益康集团创建于1983年&#xff0c;发展成为集药品研发生产、销售、特医功能食品、精细化工、医疗防护产品等多产业经营为一体的省级企业集团。益康集团紧跟国家发展战略&#xff0c;满足民众日益增长的健康需求&#xff0c;将食品生产向特医保健功能食品转型升级&#xff0…

智能家居安防系统教学解决方案

前言 随着科技的不断进步和智能家居概念的深入人心&#xff0c;智能家居安防系统作为智能家居领域的重要组成部分&#xff0c;其重要性日益凸显。智能家居安防系统不仅能够提供环境和人员的监测功能&#xff0c;还能够采取措施降低或避免人员伤亡及财产损失。因此&#xff0c;…

使用大漠插件进行京东联盟转链

由于之前开发了一套使用api转链的接口在前面几个月失效了。因为京东联盟系统升级&#xff0c;导致之前可以转的链接现在必须要升级权限才可以。但是升级条件对于我们这些自己买东西转链想省点钱的人来说基本上达不到。 所以&#xff0c;基于这种情况。我之前研究过大漠插件&am…

Twitter群发消息API接口的功能?如何配置?

Twitter群发消息API接口怎么申请&#xff1f;如何使用API接口&#xff1f; 为了方便企业和开发者有效地与用户互动&#xff0c;Twitter提供了各种API接口&#xff0c;其中Twitter群发消息API接口尤为重要。AokSend将详细介绍Twitter群发消息API接口的功能及其应用场景。 Twit…

极狐GitLab 将亮相2024空天信息大会暨数字地球生态峰会,携手中科星图赋能空天行业开发者

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab &#xff1a;https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署…

基于正点原子的FreeRTOS学习笔记——任务时间管理API实验

目录 一、任务时间管理API介绍 二、宏定义修改 三、实验程序 3.1、时基定时器配置 3.2、任务程序 四、实验现象 一、任务时间管理API介绍 在官方文档的API引用任务实用程序中可以找到此API的介绍 https://www.freertos.org/zh-cn-cmn-s/a00021.html#vTaskGetRunTimeSta…

23_嵌入式系统存储体系

目录 高速缓存cache cache的作用 统一的cache和独立的数据/程序cache CPU更新cache和主存的方法 读操作分配cache和写操作分配cache cache工作原理 存储管理单元 MMU特点 TLB MMU内存块和域 MMU的地址变换过程 使能MMU时存储访问过程 禁止MMU时存储访问过程 快速上…

3033. 修改矩阵 Easy

给你一个下标从 0 开始、大小为 m x n 的整数矩阵 matrix &#xff0c;新建一个下标从 0 开始、名为 answer 的矩阵。使 answer 与 matrix 相等&#xff0c;接着将其中每个值为 -1 的元素替换为所在列的 最大 元素。 返回矩阵 answer 。 示例 1&#xff1a; 输入&#xff1a;…

【基于R语言群体遗传学】-2-模拟基因型(simulating genotypes)

书接上文&#xff0c;我们昨天讨论了遗传的哈代温伯格比例&#xff1a; 【基于R语言群体遗传学】-1-哈代温伯格基因型比例-CSDN博客 接下来&#xff0c;如果我们能够模拟一个过程并观察模拟结果与我们预期的是否相符&#xff0c;这通常有助于指导我们对这个过程的直观感觉。让…

Mysql笔记-v2

零、 help、\h、? 调出帮助 mysql> \hFor information about MySQL products and services, visit:http://www.mysql.com/ For developer information, including the MySQL Reference Manual, visit:http://dev.mysql.com/ To buy MySQL Enterprise support, training, …

【刷题笔记(编程题)05】另类加法、走方格的方案数、井字棋、密码强度等级

1. 另类加法 给定两个int A和B。编写一个函数返回AB的值&#xff0c;但不得使用或其他算数运算符。 测试样例&#xff1a; 1,2 返回&#xff1a;3 示例 1 输入 输出 思路1: 二进制0101和1101的相加 0 1 0 1 1 1 0 1 其实就是 不带进位的结果1000 和进位产生的1010相加 无进位加…

grpc-go服务端接口添加

【1】新建一个目录whgserviceproto&#xff0c;目录下新建一个proto包&#xff1a;whgserviceproto.proto &#xff08;注意目录和包名称保持一致&#xff09; //协议为proto3 syntax "proto3"; // 指定生成的Go代码在你项目中的导入路径 option go_package"…

【数据结构】06.栈队列

一、栈 1.1栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Last In First Out)的原则。 压栈&#…

昇思MindSpore学习总结九——FCN语义分割

1、语义分割 图像语义分割&#xff08;semantic segmentation&#xff09;是图像处理和机器视觉技术中关于图像理解的重要一环&#xff0c;AI领域中一个重要分支&#xff0c;常被应用于人脸识别、物体检测、医学影像、卫星图像分析、自动驾驶感知等领域。 语义分割的目的是对图…

【MySQL】数据类型{tinyint/bit/float/decimal/char/varchar/date/enum/set}

文章目录 1.数据类型分类2.数值类型2.1tinyint 1字节2.2bit 0-64位2.3浮点类型float 4个字节decimal 3.字符串类型char开多少空间为多大varchar开多少是上限 存多少占多大空间日期和时间类型enum和setenum&#xff1a;枚举&#xff0c;“单选”类型&#xff1b;set&#xff1a;…

数字人大赋能未来治理新篇章,正宇软件助力人大建设新实践

在全面贯彻落实党的二十大精神的开局之年&#xff0c;数字中国战略的深入实施如同一股强劲的东风&#xff0c;吹遍了神州大地的每一个角落。作为数字中国建设的重要组成部分&#xff0c;数字人大作为现代信息技术与人大工作深度融合的产物&#xff0c;正以其独特的魅力和深远的…

自定义代理编辑控件类TComboBoxDelegate

自定义代理编辑控件是在tableView单元格中&#xff0c;呈现编辑辅助的Combox控件 自定义代理编辑控件类TComboBoxDelegate的定义过程 重写自定义代理编辑组件类的四个方法&#xff1a; 创建编辑组件、模型赋值给代理编辑组件、代理编辑组件数据到模型、更新位置 .h #ifndef TC…