AI图像相似性搜索对比:VIT, CLIP, DINO-v2, BLIP-2

图像相似性搜索的核心在于一个简单的想法:图像可以表示为高维空间中的向量。当两个图像相似时,它们的向量应该在这个空间中占据相似的位置。我们可以通过测量角度(或余弦相似度)来确定这些向量的相似程度。如果角度小,图像就接近(相似)。如果角度大(不同),图像就会相距很远。这就像在公寓大楼里寻找邻居一样,但方式要抽象得多。使用不同的 AI 模型,例如 ViTCLIPBLIPEfficientNetDINO-v2VGG16比较图像并查看它们的相似之处。
在这里插入图片描述

模型介绍

关于图像相似度计算的几种深度学习方法,以下是对几个模型的介绍,包括它们的优缺点:

1. ViT(Vision Transformer)

ViT是Google在2020年提出的模型,将Transformer架构应用于图像分类任务。ViT通过将图像分割成多个小块(patches),然后将这些小块线性映射到低维空间,并添加位置编码后输入到Transformer Encoder中进行处理。
优点

  • 全局感受野:ViT能够捕获图像的全局特征,这在CNN中较难实现。
  • 可扩展性:模型的效果随着模型大小的增加而提升,表现出很好的可扩展性。
  • 较少的训练资源:在大规模数据集上预训练后,ViT在多个中小型图像识别基准上的表现优于SOTA的CNN,同时需要的训练资源更少。

缺点

  • 缺乏归纳偏置:ViT不具有CNN的归纳偏置,如平移不变性和局部感受野,这可能需要额外的技术来补偿。
  • 对数据量要求高:ViT在小数据集上的表现可能不如CNN,需要大量数据进行预训练才能发挥其优势。

2. CLIP(Contrastive Language-Image Pre-Training)

CLIP是OpenAI在2021年发布的多模态预训练神经网络,通过对比学习的方式,将图像和文本映射到共享的向量空间中,实现图像和文本之间的语义关联。

优点

  • 零样本学习:CLIP在零样本学习任务中表现出色,不需要看到新的图像或文本的训练示例就能进行预测。
  • 简洁有效的架构:模型架构简洁,效果好,适用于多种视觉和语言任务。

缺点

  • 对标注数据的依赖:尽管CLIP在预训练阶段不需要大量标注数据,但在某些任务中,如图像分类,可能需要额外的标注数据来微调模型。

3. BLIP(Bootstrapped Language-Image Pretraining)

BLIP是Salesforce提出的多模态Transformer模型,旨在统一视觉理解任务和生成任务。BLIP通过引入Captioner和Filter模块来提高数据质量和数量,从而提升模型性能。
优点

  • 理解和生成能力:BLIP兼具图文多模态的理解和生成能力,适用于多种视觉语言任务。
  • 数据质量提升:通过Captioner和Filter模块,BLIP能够去除网络资源中的文本噪声,提高模型性能。

缺点

  • 训练成本:BLIP的训练需要较大的网络架构和数据集,导致较大的训练代价。

4. EfficientNet

EfficientNet是Google提出的模型,通过复合缩放方法(同时考虑网络深度、宽度和图像分辨率)来提高模型的效率和准确性。

优点

  • 高效率:EfficientNet在保持高准确率的同时,模型更小、更快,提高了网络的实用性和工业落地可能。
  • 系统性模型缩放:EfficientNet提出了一种系统性的方法来缩放模型,而不是随意增加网络的深度或宽度。

缺点

  • 对资源的需求:尽管EfficientNet在效率上有显著提升,但在某些情况下,可能仍然需要较多的计算资源。

5. DINO-v2

DINO-v2是Meta AI发布的自监督学习模型,能够抽取强大的图像特征,且在下游任务上不需要微调。

优点

  • 无需微调:DINO-v2可以直接用作多种计算机视觉任务的骨干网络,无需微调。
  • 自监督学习:DINO-v2使用自监督学习,可以从任何图像集合中学习,不依赖于大量的标记数据。

缺点

  • 对数据集的依赖:虽然DINO-v2可以从任何图像集合中学习,但其性能可能依赖于数据集的质量和多样性。

步骤1:数据准备

从维基百科抓取了国旗图像,将世界各地国家的国旗变成了一个数据集。

图像相似性搜索的核心在于一个简单的想法:图像可以表示为高维空间中的向量。当两个图像相似时,它们的向量应该在这个空间中占据相似的位置。我们可以通过测量角度(或余弦相似度)来确定这些向量的相似程度。如果角度小,图像就接近(相似)。如果角度大(不同),图像就会相距很远。这就像在公寓大楼里寻找邻居一样,但方式要抽象得多。


import pandas as pd
flags_df = pd.read_csv('national_flags.csv')  
print(flags_df)

在这里插入图片描述

步骤2:特征提取

提取特征,将每个模型获取标志的图像并将其转换为特征向量,并将其特征转换为数字列表。在本实验中,将使用 Huggingface 的特征转换器库来进行特征提取。

  • EfficientNet: 通过平均最后一个隐藏层输出的空间维度来提取标志特征,重点关注细粒度模式。
image_processor = AutoImageProcessor.from_pretrained("google/efficientnet-b7")
model = EfficientNetModel.from_pretrained("google/efficientnet-b7")# prepare input image
inputs = image_processor(img, return_tensors='pt')with torch.no_grad():outputs = model(**inputs, output_hidden_states=True)embedding = outputs.hidden_states[-1]
embedding = torch.mean(embedding, dim=[2,3])
  • ViT: 使用其转换器架构中第一个标记的最后隐藏状态,捕获局部和全局视觉特征。
image_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224-in21k")
model = ViTModel.from_pretrained("google/vit-large-patch16-224-in21k")# prepare input image
inputs = image_processor(img, return_tensors='pt')with torch.no_grad():outputs = model(**inputs)
embedding = outputs.last_hidden_state
embedding = embedding[:, 0, :].squeeze(1)
  • DINO-v2: 通过专注于自我监督学习来生成嵌入,利用第一个标记来捕获以对象为中心的细节。

image_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')# prepare input image
inputs = image_processor(img, return_tensors='pt')with torch.no_grad():outputs = model(**inputs)
embedding = outputs.last_hidden_state
embedding = embedding[:, 0, :].squeeze(1)
  • CLIP: 结合图像和文本嵌入,使用图像特征来理解视觉概念以及来自配对文本的上下文数据。
image_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")# prepare input image
inputs = image_processor(images=img, return_tensors='pt', padding=True)with torch.no_grad():embedding = model.get_image_features(**inputs) 
  • BLIP-2: 采用视觉语言模型,通过其以查询为中心的转换器 (Q-Former) 提取特征来捕获图像语义和关系。
image_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)inputs = image_processor(images=img, return_tensors='pt', padding=True)
print('input shape: ', inputs['pixel_values'].shape)with torch.no_grad():outputs = model.get_qformer_features(**inputs)
embedding = outputs.last_hidden_state
embedding = embedding[:, 0, :].squeeze(1)
  • VGG16: 一种 CNN 模型,通过应用一堆卷积层来输出标记嵌入,强调分层图像表示。
model = models.vgg16(pretrained=True) 
model.eval()  # Set the model to evaluation modebatch_t = torch.unsqueeze(img, 0)with torch.no_grad():embedding = model(batch_t)

接着将每个模型提取的图像特征,转换为DataFrame数据,这将作为相似性分析的基础。

步骤 3:使用FAISS余弦相似度

通过上面的方法将图像通过各个模型进行特征提取,并将特征转换成dataframe的形式。利用余弦相似度来计算图像相似程度。余弦相似度比较两个向量的方向,使其能够有效地根据模式而不是大小来识别关系。这种方法在分析数据相似度上特别有用,其中重点是相对形状和像素元素,而不是特征向量的绝对大小。

  • 归一化:每个特征向量都归一化为单位长度,因此余弦相似度可以计算为向量的点积。这确保相似性反映了向量之间的角度。

  • 用于相似性搜索的 FAISS:利用 FAISS(一个针对高效相似性搜索而优化的库),根据其标准化特征向量,根据测试的数据查找前 K 个最相似的国家/地区。在大型旗帜图像数据集上进行快速且可扩展的比较。

def clean_feature_string(feature_str):cleaned_str = re.sub(r'[\[\]]', '', feature_str)  # Remove bracketscleaned_values = np.fromstring(cleaned_str, sep=' ')  # Parse values into numpy arrayreturn cleaned_values# Function to get top K similar countries using FAISS
def get_top_k_similar_countries(input_country, df, k=5):countries = df['Country'].valuesfeatures = np.array([clean_feature_string(f) for f in df['features'].values])# Find the index of the input countrytry:input_idx = list(countries).index(input_country)except ValueError:return f"Country '{input_country}' not found in the dataset."input_embedding = features[input_idx].reshape(1, -1)# Normalize the feature vectors for cosine similarityfeatures_normalized = features / np.linalg.norm(features, axis=1, keepdims=True)# Create a FAISS index for similarity searchdim = features.shape[1]index = faiss.IndexFlatIP(dim)  # Add all features to the FAISS indexindex.add(features_normalized)# Search for the top K most similar countriesdistances, top_k_idx = index.search(input_embedding, k+1)  # k+1 to exclude the country itself# Return top K countries with their similarity scoresreturn [(countries[i], distances[0][j]) for j, i in enumerate(top_k_idx[0]) if i != input_idx]## Display top 5 similar flags 
top_5_countries = get_top_k_similar_countries(country, k=5)for idx, (country, score) in enumerate(top_5_countries):# Load the flag image for each country from the local folderimg = load_local_image(country)display(img)

步骤4: 模型测试

测试 1:乍得和罗马尼亚 所有模型都返回“罗马尼亚”作为最佳匹配。
在这里插入图片描述
测试 2:澳大利亚和新西兰 所有模型都正确识别了新西兰。
在这里插入图片描述

完整版代码如下:


# script to generate embeddings and perform similarity searchesimport pandas as pd
import torch
from transformers import AutoImageProcessor, EfficientNetModel, ViTModel, AutoModel, CLIPProcessor, CLIPModel, Blip2Processor, Blip2Model
from torchvision import models, transforms
import numpy as np
import os
import re
import faiss
flags_df = pd.read_csv('national_flags.csv')  # Uncomment if you're loading from a CSV
IMAGE_DIR = "images"
def load_local_image(country_name):# Sanitize the country name to match the local image file naming conventionsanitized_country_name = country_name.replace(" ", "_").replace("[", "").replace("]", "")# Path to the local image fileimage_path = os.path.join(IMAGE_DIR, f"{sanitized_country_name}.png")# Check if the image exists in the folderif os.path.exists(image_path):img = Image.open(image_path)# Convert image to RGB if not already in that modeif img.mode != 'RGB':img = img.convert('RGB')return imgelse:print(f"Image for {country_name} not found.")return None
#ViTdef extract_features_vit(country):image_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224-in21k")model = ViTModel.from_pretrained("google/vit-large-patch16-224-in21k")# prepare input imageimg = load_local_image(country)inputs = image_processor(img, return_tensors='pt')with torch.no_grad():outputs = model(**inputs)embedding = outputs.last_hidden_stateembedding = embedding[:, 0, :].squeeze(1)return embedding.numpy()
#EfficientNetdef extract_features_efficientNet(country):# load pre-trained image processor for efficientnet-b7 and model weightimage_processor = AutoImageProcessor.from_pretrained("google/efficientnet-b7")model = EfficientNetModel.from_pretrained("google/efficientnet-b7")# prepare input imageimg = load_local_image(country)inputs = image_processor(img, return_tensors='pt')with torch.no_grad():outputs = model(**inputs, output_hidden_states=True)embedding = outputs.hidden_states[-1]embedding = torch.mean(embedding, dim=[2,3])return embedding.numpy()#DINO-v2def extract_features_DINO_v2(country):# load pre-trained image processor for efficientnet-b7 and model weightimage_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')model = AutoModel.from_pretrained('facebook/dinov2-base')# prepare input imageimg = load_local_image(country)inputs = image_processor(img, return_tensors='pt')with torch.no_grad():outputs = model(**inputs)embedding = outputs.last_hidden_stateembedding = embedding[:, 0, :].squeeze(1)return embedding.numpy()#CLIPdef extract_features_clip(country):# load pre-trained image processor for efficientnet-b7 and model weightimage_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")# prepare input imageimg = load_local_image(country)inputs = image_processor(images=img, return_tensors='pt', padding=True)with torch.no_grad():embedding = model.get_image_features(**inputs) return embedding.numpy()#Blip 2def extract_features_blip(country):image_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)img = load_local_image(country)inputs = image_processor(images=img, return_tensors='pt', padding=True)print('input shape: ', inputs['pixel_values'].shape)with torch.no_grad():outputs = model.get_qformer_features(**inputs)embedding = outputs.last_hidden_stateembedding = embedding[:, 0, :].squeeze(1)return embedding.numpy()#vgg16def extract_features_vgg16(country):model = models.vgg16(pretrained=True) model.eval()  # Set the model to evaluation mode# Define the transformation to preprocess the imagepreprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = load_local_image(country)img_t = preprocess(img)batch_t = torch.unsqueeze(img_t, 0)with torch.no_grad():embedding = model(batch_t)return embedding.numpy()# Extract features for all flags
flags_df['features'] = flags_df['Country'].apply(extract_features_vit)
#export embeddings to CSV
flags_df.to_csv('national_flag_embeddings_blip.csv', index=False)
#Cosine similarity with FAISSdf = pd.read_csv('embeddings/national_flag_embeddings_vit.csv')
country = "Australia"def clean_feature_string(feature_str):cleaned_str = re.sub(r'[\[\]]', '', feature_str)  # Remove bracketscleaned_values = np.fromstring(cleaned_str, sep=' ')  # Parse values into numpy arrayreturn cleaned_values# Function to get top K similar countries using FAISS
def get_top_k_similar_countries(input_country, df, k=5):countries = df['Country'].valuesfeatures = np.array([clean_feature_string(f) for f in df['features'].values])# Find the index of the input countrytry:input_idx = list(countries).index(input_country)except ValueError:return f"Country '{input_country}' not found in the dataset."input_embedding = features[input_idx].reshape(1, -1)# Normalize the feature vectors for cosine similarityfeatures_normalized = features / np.linalg.norm(features, axis=1, keepdims=True)# Create a FAISS index for similarity searchdim = features.shape[1]index = faiss.IndexFlatIP(dim)  # Add all features to the FAISS indexindex.add(features_normalized)# Search for the top K most similar countriesdistances, top_k_idx = index.search(input_embedding, k+1)  # k+1 to exclude the country itself# Return top K countries with their similarity scoresreturn [(countries[i], distances[0][j]) for j, i in enumerate(top_k_idx[0]) if i != input_idx]# Display top 5 similar flags 
top_5_countries = get_top_k_similar_countries(country, k=5)for idx, (country, score) in enumerate(top_5_countries):# Load the flag image for each country from the local folderimg = load_local_image(country)display(img)

获取数据代码:

 script to scrape flag images from Wikipedia and download images
import pandas as pd
import requests
from bs4 import BeautifulSoup
import os
import pandas as pd
import requests
from PIL import Image
from io import BytesIO
# URL of the Wikipedia page
url = "https://en.wikipedia.org/wiki/List_of_national_flags_of_sovereign_states"# Send a GET request to the URL
response = requests.get(url)# Parse the content of the page with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')# Find the table with the flags
table = soup.find('table', class_='wikitable')# Initialize lists to store the names and images
names = []
images = []# Iterate through the rows of the table
for row in table.find_all('tr')[1:]:  # Skip the header rowflag_cell = row.find('td')name_cell = row.find('th')  # Extract the name cell# Check if both cells are foundif flag_cell and name_cell:# Extract the country namename = name_cell.get_text(strip=True)# Extract the flag image URL (from the <img> tag)img_tag = flag_cell.find('img')if img_tag and img_tag.has_attr('src'):# Construct the full image URLimg_url = "https:" + img_tag['src']else:img_url = None# Append the results to the listsnames.append(name)images.append(img_url)# Create a DataFrame with the results
flags_df = pd.DataFrame({'Country': names,'Flag Image': images
})# Display the DataFrame# Optionally, save the DataFrame to a CSV file
flags_df.to_csv('national_flags.csv', index=False)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1462.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

AI风险及数据合规问题

一、数据来源合规问题 1、请说明发行人采集数据时是否获得了相关信息主体及用户的合法授权&#xff0c;获取用户数据的手段及方式是否合法合规; 2、请说明发行人获取用户数据及标签的过程及方法&#xff0c;是否对用户有明示提示&#xff0c;用户授权在法律上是否完备&#xff…

yoloV5实战笔记—环境搭建(一)

一、安装miniconda 从清华源进行下载 https://mirrors.tuna.tsinghua.edu.cn/ 具体命令参考&#xff0c;注意修改pip国内镜像地址 https://mirrors.tuna.tsinghua.edu.cn/help/AOSP/ 创建环境&#xff0c;指定python版本 conda create -n demo python3.9激活环境 conda acti…

Docker:存储原理

Docker&#xff1a;存储原理 镜像联合文件系统overlay镜像存储结构容器存储结构 存储卷绑定挂载存储卷结构 镜像 联合文件系统 联合文件系统Union File System是一种分层&#xff0c;轻量且高效的文件系统。其将整个文件系统分为多个层&#xff0c;层与层之间进行覆盖&#x…

【源码+文档】基于SpringBoot的养老院管理系统

作者简介&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容&#xff1a;&#x1f31f;Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

LVGL UI设计神器助你高效开发嵌入式UI应用——v0.16.0发布

文章目录 Preface一、What is Anyui&#xff1f;二、Features of v0.16.0 releaseSum up Preface As coming of Internet of Things, the “screen reading” era predicted by Kevin Kelly has also arrived. Besides products like mobile phones and tablets which are PC-…

JavaFx -- chapter06(UDPSocket)

chapter06(UDPSocket) UPD的特点 UDP有独立的套接字&#xff08;IP PORT&#xff09;&#xff0c;与TCP使用相同端口号不会冲突。UDP在使用前不需要进行连接&#xff0c;没有流的概念。UDP通信类似于邮件通信&#xff1a;不需要实时连接&#xff0c;只需要目的地址。UDP通信…

爬虫学习2

数据解析 正则表达式 量词&#xff1a; import re#searcch只会匹配到第一次匹配的内容#result re.search(r"\d","今年32")#print(result.group()) #result re.findall(r"\d","我是一个abcdeafg") #print(result)#search只会匹配到第…

radio astronomy 2

地球上的电离层会被太阳风影响。

服务器作业(2)

架设一台NFS服务器&#xff0c;并按照以下要求配置 关闭防火墙 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 配置文件设置&#xff1a; [rootlocalhost ~]# vim /etc/exports 1、开放/nfs/shared目录&#xff0c;供所有用户查询资料 共享…

基于MATLAB多参数结合火焰识别系统

一、课题介绍 本设计为基于MATLAB的火焰烟雾火灾检测系统。传统的采用颜色的方法&#xff0c;误识别大&#xff0c;局限性强。结合火焰是实时动态跳跃的&#xff0c;采用面积增长率&#xff0c;角点和圆形度三个维度相结合的方式判断是否有火焰。该设计测试对象为视频&#xf…

云轴科技ZStack在CID大会上分享VF网卡热迁移技术

近日&#xff0c;2024中国云计算基础架构开发者大会&#xff08;以下简称CID大会&#xff09;在北京举行。此次大会集中展示了云计算基础架构技术领域最前沿的科创成果&#xff0c;汇聚众多的技术专家和行业先锋&#xff0c;共同探讨云计算基础设施的最新发展和未来趋势。云轴科…

阿里云 K8S ACK服务 创建使用教程

目录 1.1 阿里云容器服务ACK介绍和创建 1.1.1 什么是容器服务Kubernetes版? 1.1.2 创建专有版Kubernetes集群 1.1.3 访问专有版Kubernetes集群 1.1.4 在专有版ACK集群创建资源并访问 通过百度网盘分享的文件&#xff1a;第12章-阿里云托管k8s集群ACK创建和使用 链接&…

H5测试点总结

一、概述 1.1 什么是H5 H5 即 HTML5&#xff0c;是最新的 Web 端开发语言版本&#xff0c;现如今&#xff0c;大多数手机 APP 页面会用 H5 实现&#xff0c;包括 PC Web 站点也会用它开发实现。所以 Web 的通用测试点和方法基本都可以适用于它。H5其实就是&#xff1a;移动端…

TapData 发布官方性能测试报告,针对各流行数据源,在多项指标中表现拔群

近日&#xff0c;TapData 官方发布了最新的性能测试报告&#xff0c;该报告详细展示了 TapData v3.5.13 在各种数据源下的性能表现&#xff0c;包括全量同步、增量同步、读写延迟等关键性能指标。 随着企业对实时数据集成和处理能力需求的提升&#xff0c;TapData 凭借其高效、…

小红书发布IP与实际不一样?揭秘背后的原因与应对策略

在小红书这个充满活力的社交平台上&#xff0c;用户们经常分享着各自的生活点滴、购物心得、美食体验等丰富内容。然而&#xff0c;有时你可能会发现&#xff0c;小红书上显示的IP地址与你的实际所在地并不一致&#xff0c;这不禁让人心性疑惑。那么&#xff0c;小红书发布IP与…

Java8 新特性 —— Stream API 详解

本文涉及到的知识点有Lambda表达式以及函数式接口&#xff0c;有不了解的小伙伴可以先学习上一篇文章&#xff1a; Java8 新特性 —— Lambda 表达式、函数接口以及方法引用详解 文章目录 引言Stream API 的使用1、创建 Stream2、中间操作&#xff08;1&#xff09;筛选与切片…

Linux历史命令history增加执行时间显示

Centos系统默认历史命令显示如下 为了更好的溯源&#xff0c;获取执行命令的准确时间&#xff0c;需要增加一些配置 设置环境变量 vim /etc/profile 在最下面添加以下环境配置 export HISTTIMEFORMAT"%Y-%m-%d %H:%M:%S " 立即刷新该环境变量 source /etc/pro…

【测试平台】【前端VUE】工具页面学习记录

背景&#xff1a; 这个我4年半以前刚接手记录&#xff0c;测试工具页面一般比较简单&#xff0c;不需要复杂东西&#xff0c;剩下就是维护。 工程安装 npm install 1.执行nmp install前先确认一下自己的node版本&#xff0c;这个项目需要是node12才可以&#xff0c;否则会出…

mysq-B+Treel(一)

介绍 MySQL是一个关系型数据库管理系统&#xff0c;由瑞典 MySQL AB 公司开发&#xff0c;属于 Oracle 旗下产品。MySQL是最流行的关系型数据库管理系统之一&#xff0c;在 WEB 应用方面&#xff0c;MySQL是最好的RDBMS (Relational Database Management System&#xff0c;关系…

解决使用netstat查看端口显示FIN_WAIT的问题

解决使用netstat查看端口显示FIN_WAIT的问题 1. 理解`FIN_WAIT`状态2. 检查应用程序3. 检查网络延迟和稳定性4. 更新和修补系统5. 调整TCP参数6. 使用更详细的工具进行分析7. 咨询开发者或技术支持8. 定期监控和评估结论在使用 netstat查看网络连接状态时,如果发现大量连接处…