【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

文章目录

  • 引言
  • 一、二维随机变量及分布
    • 1.1 基本概念
    • 1.2 联合分布函数的性质
  • 二、二维离散型随机变量及分布
  • 三、多维连续型随机变量及分布
    • 3.1 基本概念
    • 3.2 二维连续型随机变量的性质
  • 写在最后


引言

隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。


一、二维随机变量及分布

1.1 基本概念

定义 1 —— 二维随机变量。设 X , Y X,Y X,Y 为定义于同一样本空间上的两个随机变量,称 ( X , Y ) (X,Y) (X,Y) 为二维随机变量。同理,也有 n n n 维随机变量的定义。

定义 2 —— 二维随机变量的分布函数。

(1)设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,对任意的 x , y ∈ R x,y\in R x,yR ,称 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy} 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合分布函数。

(2)称函数 F X ( x ) = P { X ≤ x } , F Y ( y ) = P { Y ≤ y } F_X(x)=P\{X\leq x\},F_Y(y)=P\{Y\leq y\} FX(x)=P{Xx},FY(y)=P{Yy} 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。同理,有 n n n 维随机变量的联合分布函数以及边缘分布函数。

1.2 联合分布函数的性质

( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数,有如下性质:

(1) 0 ≤ F ( x , y ) ≤ 1 ; 0 \leq F(x,y) \leq 1; 0F(x,y)1;

(2) F ( x , y ) F(x,y) F(x,y) x , y x,y x,y 都是单调不减函数;

(3) F ( x ) F(x) F(x) 关于 x , y x,y x,y 都是右连续;

(4) F ( − ∞ , − ∞ ) = 0 = F ( − ∞ , + ∞ ) = F ( + ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1. F(-\infty,-\infty)=0=F(-\infty,+\infty)=F(+\infty,-\infty)=0,F(+\infty,+\infty)=1. F(,)=0=F(,+)=F(+,)=0,F(+,+)=1.

其实和一维随机变量的分布函数的性质大差不差的,我也是从一维那里复制过来改了下的hhh。

以下是一些推论:

(1)设 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {Xx}=A,{Yy}=B ,则 F ( x , y ) = P ( A B ) , F X ( x ) = P ( A ) , F Y ( y ) = P ( B ) . F(x,y)=P(AB),F_X(x)=P(A),F_Y(y)=P(B). F(x,y)=P(AB),FX(x)=P(A),FY(y)=P(B). 即联合分布函数是要取交集。

(2) F X ( x ) = F ( x , + ∞ ) , F Y ( y ) = F ( + ∞ , y ) . F_X(x)=F(x,+\infty),F_Y(y)=F(+\infty,y). FX(x)=F(x,+),FY(y)=F(+,y). 即当一个变量限制在小于正无穷范围(这是肯定的),当然此时联合分布函数和边缘分布函数一致了。

(3)设 a 1 < a 2 , b 1 < b 2 a_1<a_2,b_1<b_2 a1<a2,b1<b2 ,则

P { a 1 < X ≤ a 2 , b 1 < Y ≤ b 2 } = P { a 1 < X ≤ a 2 , Y ≤ b 2 } − P { a 1 < X ≤ a 2 , Y ≤ b 1 } = ( P { X ≤ a 2 , Y ≤ b 2 } − P { X ≤ a 1 , Y ≤ b 2 } ) − ( P { X ≤ a 2 , Y ≤ b 1 } − P { X ≤ a 1 , Y ≤ b 1 } ) = F ( a 2 , b 2 ) − F ( a 1 , b 2 ) − F ( a 2 , b 1 ) + F ( a 1 , b 1 ) . P\{a_1 < X\leq a_2,b_1 < Y \leq b_2\}=P\{a_1 < X\leq a_2,Y\leq b_2\}-P\{a_1 < X\leq a_2,Y \leq b_1\}=(P\{X \leq a_2,Y\leq b_2\}-P\{X \leq a_1,Y\leq b_2\})-(P\{X \leq a_2,Y\leq b_1\}-P\{X\leq a_1,Y\leq b_1\})=\pmb{F(a_2,b_2)-F(a_1,b_2)-F(a_2,b_1)+F(a_1,b_1)}. P{a1<Xa2,b1<Yb2}=P{a1<Xa2,Yb2}P{a1<Xa2,Yb1}=(P{Xa2,Yb2}P{Xa1,Yb2})(P{Xa2,Yb1}P{Xa1,Yb1})=F(a2,b2)F(a1,b2)F(a2,b1)+F(a1,b1).


二、二维离散型随机变量及分布

( X , Y ) (X,Y) (X,Y) 为二维随机变量,若 ( X , Y ) (X,Y) (X,Y) 的可能取值为有限对或可列对,称 ( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量。

设随机变量 ( X , Y ) (X,Y) (X,Y) 的可能取值为 ( x i , y j ) ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) (x_i,y_j)(i=1,2,\cdots,m;j=1,2,\cdots,n) (xi,yj)(i=1,2,,m;j=1,2,,n) ,称 P { X ≤ x i , Y ≤ y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) , 或 P\{X\leq x_i,Y\leq y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n),或 P{Xxi,Yyj}=pij(i=1,2,,m;j=1,2,,n),
在这里插入图片描述

( X , Y ) (X,Y) (X,Y) 的联合分布律。其具有如下性质:

  1. p i j ≥ 0 ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) ; p_{ij}\geq 0(i=1,2,\cdots,m;j=1,2,\cdots,n); pij0(i=1,2,,m;j=1,2,,n);
  2. ∑ ∑ p i j = 1. \sum\sum p_{ij}=1. ∑∑pij=1.

由全概率公式,有 P { X = x i } = P { X = x i , y 1 } + ⋯ + P { X = x i , y n } = p i 1 + ⋯ + p i , n = p i ( i = 1 , 2 , ⋯ , m ) . P\{X=x_i\}=P\{X=x_i,y_1\}+\cdots+P\{X=x_i,y_n\}=p_{i1}+\cdots+p_{i,n}=p_i(i=1,2,\cdots,m). P{X=xi}=P{X=xi,y1}++P{X=xi,yn}=pi1++pi,n=pi(i=1,2,,m). 同理,可以得到 P { Y = y i } P\{Y= y_i\} P{Y=yi} 。于是,联合分布律每一行每一列之和,即可构成两个随机变量的边缘分布律。

在这里插入图片描述

一般情况下,联合分布律和边缘分布律可以放在一张表格中:

在这里插入图片描述

三、多维连续型随机变量及分布

3.1 基本概念

( X , Y ) (X,Y) (X,Y) 为二维随机变量,其分布函数为 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy} ,若存在非负可积函数 f ( x , y ) f(x,y) f(x,y) ,使得 F ( x , y ) = ∫ − ∞ x d u ∫ − ∞ y f ( u , v ) d v F(x,y)=\int_{-\infty}^xdu\int_{-\infty}^yf(u,v)dv F(x,y)=xduyf(u,v)dv ,称 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y) 的联合密度函数, F ( x , y ) F(x,y) F(x,y) 为联合分布函数。

f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y , f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_X(x)=\int_{-\infty}^\infty f(x,y)dy,f_Y(y)=\int_{-\infty}^\infty f(x,y)dx fX(x)=f(x,y)dy,fY(y)=f(x,y)dx 分别为随机变量 X , Y X,Y X,Y 的边缘密度函数。

F X ( x ) = ∫ − ∞ x f X ( x ) d x , F Y ( y ) = ∫ − ∞ y f Y ( y ) d y F_X(x)=\int_{-\infty}^xf_X(x)dx,F_Y(y)=\int_{-\infty}^yf_Y(y)dy FX(x)=xfX(x)dx,FY(y)=yfY(y)dy 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。

同理,以上结论可推广到 n n n 维。

3.2 二维连续型随机变量的性质

f ( x , y ) f(x,y) f(x,y) 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合密度函数,则

  1. f ( x , y ) ≥ 0 ; f(x,y)\geq 0; f(x,y)0;
  2. ∫ − ∞ ∞ d x ∫ − ∞ ∞ f ( x , y ) d y = 1. \int_{-\infty}^\infty dx\int_{-\infty}^\infty f(x,y)dy=1. dxf(x,y)dy=1.

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为其联合密度函数, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数。若 F ( x , y ) F(x,y) F(x,y) 在某点 ( x , y ) (x,y) (x,y) 处二阶可偏导,有 f ( x , y ) = ∂ F ∂ x ∂ y ; f(x,y)=\frac{\partial F}{\partial x \partial y}; f(x,y)=xyF; 若在某点处二阶不可偏导,则 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0

二阶联合分布函数一定连续,但不一定二阶可偏导。


写在最后

果然,先去看看多元微分和多重积分,看这个就较为轻松。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/145016.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【IDEA】IDEA 单行注释开头添加空格

操作 打开 IDEA 的 Settings 对话框&#xff08;快捷键为CtrlAltS&#xff09;&#xff1b;在左侧面板中选择Editor -> Code Style -> Java&#xff1b;在右侧面板中选择Code Generation选项卡&#xff1b;将Line comment at first column选项设置为false使注释加在行开…

如何设置代理ip服务器地址

在今天的互联网环境中&#xff0c;代理服务器在保护个人隐私和规避网络限制方面扮演着重要的角色。设置代理服务器地址的方式主要取决于你使用的具体软件或编程语言。在本文中&#xff0c;我们将分别介绍如何在Python和Java中使用HTTP代理服务器、SOCKS代理服务器以及代理池。 …

数据结构:堆的简单介绍

目录 堆的介绍:(PriorityQueue) 大根堆:根节点比左右孩子节点大 小根堆:根节点比左右孩子节点小 堆的存储结构: 为什么二叉树在逻辑上用满二叉树结构,而不是普通二叉树呢? 因为如果是普通二叉树会造成资源的浪费​编辑 堆的介绍:(PriorityQueue) 堆又称优先级队列,何为优先…

RocketMQ —消费者负载均衡

消费者从 Apache RocketMQ 获取消息消费时&#xff0c;通过消费者负载均衡策略&#xff0c;可将主题内的消息分配给指定消费者分组中的多个消费者共同分担&#xff0c;提高消费并发能力和消费者的水平扩展能力。本文介绍 Apache RocketMQ 消费者的负载均衡策略。 背景信息​ …

maven中relativepath标签的含义

一 relative标签的含义 1.1 作用 这个<parent>下面的<relativePath>属性&#xff1a;parent的pom文件的路径。 relativePath 的作用是为了找到父级工程的pom.xml;因为子工程需要继承父工程的pom.xml文件中的内容。然后relativePath 标签内的值使用相对路径定位…

【切片】基础不扎实引发的问题

本次文章主要是来聊聊关于切片传值需要注意的问题&#xff0c;如果不小心&#xff0c;则很容易引发线上问题&#xff0c;如果不够理解&#xff0c;可能会出现奇奇怪怪的现象 问题情况&#xff1a; 小 A 负责一个模块功能的实现&#xff0c;在调试代码的时候可能不仔细&#x…

electron之快速上手

前一篇文章已经介绍了如何创建一个electron项目&#xff0c;没有看过的小伙伴可以去实操一下。 接下来给大家介绍一下electron项目的架构是什么样的。 electron之快速上手 electron项目一般有两个进程&#xff1a;主进程和渲染进程。 主进程&#xff1a;整个项目的唯一入口&…

【Java】复制数组的四种方式

1. System.arraycopy() 用来将一个数组的&#xff08;一部分&#xff09;内容复制到另一个数组里面去。 定义&#xff1a; void arraycopy(Object src, int srcPos, Object dest, int destPos, int length);例&#xff1a; int[] arr1 { 1, 2, 3, 4, 5 }; int[] arr2 new…

SpringBoot全局异常处理源码

SpringBoot全局异常处理源码 一、SpringMVC执行流程二、SpringBoot源码跟踪三、自定义优雅的全局异常处理脚手架starter自定义异常国际化引入封装基础异常封装基础异常扫描器&#xff0c;并注册到ExceptionHandler中项目分享以及改进点 一、SpringMVC执行流程 今天这里叙述的全…

基于Java的药品管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

Java微信分享接口开发

概述 微信JS-SDK实现自定义分享功能&#xff0c;分享给朋友&#xff0c;分享到朋友圈 详细 概述 概述 微信公众平台开始支持前端网页&#xff0c;大家可能看到很多网页上都有分享到朋友圈&#xff0c;关注微信等按钮&#xff0c;点击它们都会弹出一个窗口让你分享和关注&…

前端uniapp防止页面整体滑动页面顶部以上,设置固定想要固定区域宽高

解决&#xff1a;设置固定想要固定区域宽高 目录 未改前图未改样式改后图改后样式 未改前图 未改样式 .main {display: flex;flex-direction: row;// justify-content: space-between;width: 100vw;// 防止全部移动到上面位置&#xff01;&#xff01;&#xff01;&#xff01…

【C++的OpenCV】第十三课-OpenCV基础强化(一):绝对有用!Mat相关的一系列知识(基础->进阶)

&#x1f389;&#x1f389;&#x1f389; 欢迎各位来到小白 p i a o 的学习空间&#xff01; \color{red}{欢迎各位来到小白piao的学习空间&#xff01;} 欢迎各位来到小白piao的学习空间&#xff01;&#x1f389;&#x1f389;&#x1f389; &#x1f496;&#x1f496;&…

在nodejs中如何防止ssrf攻击

在nodejs中如何防止ssrf攻击 什么是ssrf攻击 ssrf&#xff08;server-side request forgery&#xff09;是服务器端请求伪造&#xff0c;指攻击者能够从易受攻击的Web应用程序发送精心设计的请求的对其他网站进行攻击。(利用一个可发起网络请求的服务当作跳板来攻击其他服务)…

C++核心编程--继承篇

4.6、继承 继承是面向对象三大特征之一 有些类与类之间存在特殊的关系&#xff0c;例如下图中&#xff1a; ​ 我们发现&#xff0c;定义这些类的定义时&#xff0c;都拥有上一级的一些共性&#xff0c;还有一些自己的特性。那么我们遇到重复的东西时&#xff0c;就可以考虑使…

大数据Flink(八十九):Temporal Join(快照 Join)

文章目录 Temporal Join(快照 Join) Temporal Join(快照 Join) Temporal Join 定义(支持 Batch\Streaming):Temporal Join 在离线的概念中其实是没有类似的 Join 概念的,但是离线中常常会维护一种表叫做 拉链快照表,使用一个明细表去 join 这个 拉链快照表 的 join …

GD32F10x的输出模式

1. 单片机型号的识别。 2. GPIO的输出模式。 1. 开漏模式 2.推挽模式 3.复用开漏模式 4.复用推挽模式。 开漏模式&#xff1a;&#xff08;写入位设置&#xff0c;输出数据寄存器来控制MOS&#xff09; 只有N-MOS管导通。PMOS不导通。 当N-MOS的栅极为0&#xff0c;N-MOS管…

SQL血缘解析原理

根据sql解析获取到表到表, 字段到字段间的关系,即血缘关系。实际上这是从sql文本获取到数据流的过程。 大致步骤如下&#xff1a; 1.sql文本进行词法分析 2.sql语法分析获取到AST抽象语法树 3.访问AST抽象语法树根据语法结构推测出数据的流向,例如create as select from 这种结…

排序:败者树和置换选择排序(解决外部排序中的优化问题)

1.算法目的&#xff08;败者树&#xff09; 解决多路平衡归并带来的问题。 在外部排序中&#xff0c;使用k路平衡归并策略, 选出一个最小元素需要对比关键字(k-1)次&#xff0c; 导致内部归并所需时间增加。&#xff08;可用“败者树”进行优化&#xff09; 2.败者树的定义 …

高德地图根据两点的经纬度计算两点之间的距离(修正版)

SQL语句可以用来计算两个经纬度之间的距离。下面是一个示例的SQL语句&#xff1a; SELECT id, ( 6371 * ACOS( COS( RADIANS( lat1 ) ) * COS( RADIANS( lat2 ) ) * COS( RADIANS( lng2 ) - RADIANS( lng1 ) ) SIN( RADIANS( lat1 ) ) * SIN( RADIANS( lat2 ) ) ) ) AS dista…