【网络协议】TCP

TCP协议全称为传输控制协议(Transmission Control Protocol).要理解TCP就要从他的特性开始说,这些特性各自之间或多或少各有联结,需要以宏观视角来看待。

目录:

1.TCP报文格式

因为报文解释过于繁琐,具体内容请看这篇文章TCP报文格式

2.确认应答(ACK)机制

TCP将每个字节的数据都进行了编号,即为序列号。

每一个ACK都带有对应的确认序列号, 意思是告诉发送者, 我已经收到了哪些数据; 下一次你从哪里开始发. 

例1:主机A发送初始SEQ为666的SYN报文,主机B接收到后发送SYN+ACK且初始SEQ为888的报文,由于两个报文并不携带有效载荷,所以报文长度应该为0。但是这里是个特殊情况,为了给对方保证自己确实收到了这个SYN报文,所以主机A和主机B下次发送的报文中的32位确认序号应该为在对方上次发送到的SEQ+1。

例2:主机A发送SEQ为666有效载荷为200字节的报文,主机B接收到后发送SEQ为888有效载荷为100字节的确认报文(确认报文可以携带自己的有效载荷)。所以主机A在收到主机B发来的确认报文(ACK置为1,SEQ为888)后,会发送确认报文,报文中ACK置为1,32位确认序号为989(因为确认序号=对方SEQ+有效载荷长度+1),意为期待下次对方发来的数据应该为989为序列号。所以想想,主机B发送的SEQ为888有效载荷为100字节的确认报文中32位确认序号为多少呢?根据上面的理论,那么就应该是666+200+1=867,意为主机A再次发送报文32位序列号应该为867。

初始序列号一定都是从0开始的吗?想象这么一个问题,主机A与主机B成功建立TCP连接。如果主机A发送SEQ为1的报文后,报文在网络中迟迟无法送达主机B。然而主机A恰好重新启动了,这时候主机B也就会释放这条连接。但是在A主机重新启动后,又以相同的源ip,源端口号,目的ip,目的端口号重新建立连接,这时候发送的报文SEQ也为1且恰好断开连接前的SEQ为1的报文也送达了,由于五元组相同,序列号都相等,这时候就会造成数据混乱的问题(会丢弃一个,我都收到了你发的序号为1的报文了,你怎么还发,你干嘛,哎呦)。

所以初始序列号会根据某种生成算法随机生成。自然32位确认序号也由对方的初始序列号+报文长度决定。

3.超时重传机制

如果如下图所示情况,报文压根没有发送过去,那么重传毫无问题。

主机A发送数据给B之后, 可能因为网络拥堵等原因, 数据无法到达主机B;
如果主机A在一个特定时间间隔内没有收到B发来的确认应答, 就会进行重发;

如果报文成功发送了,但是对方主机发来的ACK报文丢失了呢?

因此主机B会收到很多重复数据. 那么TCP协议需要能够识别出那些包是重复的包, 并且把重复的丢弃掉.
这时候我们可以利用前面提到的序列号, 就可以很容易做到去重的效果.
那么, 如果超时的时间如何确定?
最理想的情况下, 找到一个最小的时间, 保证 "确认应答一定能在这个时间内返回".
但是这个时间的长短, 随着网络环境的不同, 是有差异的.
如果超时时间设的太长, 会影响整体的重传效率;
如果超时时间设的太短, 有可能会频繁发送重复的包;

TCP为了保证无论在任何环境下都能比较高性能的通信, 因此会动态计算这个最大超时时间. 

Linux(BSD UnixWindows也是如此), 超时以500ms为一个单位进行控制, 每次判定超时重发的超时 时间都是500ms的整数倍.
如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传.
如果仍然得不到应答, 等待 4*500ms 进行重传. 依次类推, 以指数形式递增.
累计到一定的重传次数, TCP认为网络或者对端主机出现异常, 强制关闭连接

4.连接管理机制

 注意:实际上在客户端connect后TCP连接就已经建立了,服务器accept只是把建立好的连接拿到应用层开始通信。

这里则涉及到TCP三次握手四次挥手,如需要请看这篇文章三次握手四次挥手

5.滑动窗口

实际上就是发送缓冲区的一段区域。

报文是发一条等到对方发送ACK后才继续发送吗,换句话说报文只能一条一条的发吗?

并不是这样效率太过低下,真实情况往往是发送方一次发送多个报文,然后接收方接收后返回ACK报文。

滑动窗口大小指的是无需等待确认应答而可以继续发送数据的最大值. 上图的窗口大小就是4000个字节(四个
).
发送前四个段的时候, 不需要等待任何ACK, 直接发送; 
收到第一个ACK, 滑动窗口向后移动, 继续发送第五个段的数据; 依次类推;
操作系统内核为了维护这个滑动窗口, 需要开辟发送缓冲区来记录当前还有哪些数据没有应答; 只有确 认应答过的数据, 才能从缓冲区删掉;
窗口越大, 则网络的吞吐率就越高;

这里如果丢包了怎么办?

情况一:ACK丢了 

如果发送方接收到后续的ACK报文,则代表前面的报文 已经被对方接收了。

情况2:包丢了

当某一段报文段丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 "我想要的是 1001" 一样;
如果发送端主机连续三次收到了同样一个 "1001" 这样的应答, 就会将对应的数据 1001 - 2000 重新发送;
这个时候接收端收到了 1001 之后, 再次返回的ACK就是7001(因为2001 - 7000)接收端其实之前就已 经收到了, 被放到了接收端操作系统内核的接收缓冲区;等到1001被接收到以后才能按顺序向应用层交付。

这种机制被称为 "高速重发控制"(也叫 "快重传").

滑动窗口大小=min(对方16位窗口大小,拥塞窗口大小);看完下面的流量控制和拥塞控制你会明白

6.流量控制

接收端处理数据的速度是有限的 . 如果发送端发的太快 , 导致接收端的缓冲区被打满 , 这个时候如果发送端继续发送 ,就会造成丢包, 继而引起丢包重传等等一系列连锁反应 .
因此 TCP 支持根据接收端的处理能力 , 来决定发送端的发送速度 . 这个机制就叫做 流量控制 (Flow Control) ;
接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 "16位 窗口大小 " 字段 , 通过 ACK 通知发送端 ;
窗口大小字段越大 , 说明网络的吞吐量越高 ;
接收端一旦发现自己的缓冲区快满了 , 就会将窗口大小设置成一个更小的值通知给发送端 ;
发送端接受到这个窗口之后 , 就会减慢自己的发送速度 ;
如果接收端缓冲区满了 , 就会将窗口置为 0; 这时发送方不再发送数据 , 但是需要定期发送一个窗口探测数据段, 使接收端把窗口大小告诉发送端 .

7.拥塞控制

当少数报文丢失,会启用超时重传或者快重传。但如果大量报文丢失呢?如果大量报文丢失,那么就认为发生了网络拥塞。

在网络拥堵的时候选择继续发送数据无疑会继续加大拥堵,所以TCP引入慢启动机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;

此处引入一个概念程为 拥塞窗口
发送开始的时候 , 定义拥塞窗口大小为 1;
每次收到一个 ACK 应答 , 拥塞窗口加 1;
每次发送数据包的时候 , 将拥塞窗口和接收端主机反馈的窗口大小做比较 , 取较小的值作为实际发送的窗口(滑动窗口);
像上面这样的拥塞窗口增长速度 , 是指数级别的 . " 慢启动 " 只是指初始时慢 , 但是增长速度非常快 .
为了不增长的那么快, 因此不能使拥塞窗口单纯的加倍.此处引入一个叫做慢启动的阈值,当拥塞窗口超过这个阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长

TCP 开始启动的时候 , 慢启动阈值等于滑动窗口最大值 ;
在每次超时重发的时候 , 慢启动阈值会变成原来的一半 , 同时拥塞窗口置回 1;
少量的丢包 , 我们仅仅是触发超时重传 ; 大量的丢包 , 我们就认为网络拥塞 ;
TCP 通信开始后 , 网络吞吐量会逐渐上升 ; 随着网络发生拥堵 , 吞吐量会立刻下降 ;
拥塞控制 , 归根结底是 TCP 协议想尽可能快的把数据传输给对方 , 但是又要避免给网络造成太大压力的折中方案 .

慢启动阈值是一个界限,为了保证数据在尽可能不加剧拥堵的前提下,尽快把数据发送出去,拥塞窗口大小在未达到慢启动阈值前以指数形式增长,到达慢启动阈值后就会以线性方式增长。

注意:窗口大小是对方告知我的,而拥塞窗口是自己获知的。

8.延迟应答

如果接收数据的主机立刻返回 ACK 应答 , 这时候返回的窗口可能比较小 .
假设接收端缓冲区为 1M. 一次收到了 500K 的数据 ; 如果立刻应答 , 返回的窗口就是 500K;
但实际上可能处理端处理的速度很快 , 10ms 之内就把 500K 数据从缓冲区消费掉了 ;
在这种情况下 , 接收端处理还远没有达到自己的极限 , 即使窗口再放大一些 , 也能处理过来 ;
如果接收端稍微等一会再应答 , 比如等待 200ms 再应答 , 那么这个时候返回的窗口大小就是 1M;
一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么 ? 肯定也不是 ;
数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;
具体的数量和超时时间 , 依操作系统不同也有差异 ; 一般 N 2, 超时时间取 200ms

9.捎带应答

发送ACK报文顺带发送数据。

10.面向字节流

创建一个 TCP socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区 ;
调用 write , 数据会先写入发送缓冲区中 ;
如果发送的字节数太长 , 会被拆分成多个 TCP 的数据包发出 ;
如果发送的字节数太短 , 就会先在缓冲区里等待 , 等到缓冲区长度差不多了 , 或者其他合适的时机发送出去;
接收数据的时候 , 数据也是从网卡驱动程序到达内核的接收缓冲区 ;
然后应用程序可以调用 read 从接收缓冲区拿数据 ;
另一方面 , TCP 的一个连接 , 既有发送缓冲区 , 也有接收缓冲区 , 那么对于这一个连接 , 既可以读数据 , 也可以写数据. 这个概念叫做 全双工。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/144414.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

大模型lora微调-chatglm2

通义千问大模型微调源码(chatglm2 微调失败,训练通义千问成功):GitHub - hiyouga/LLaMA-Efficient-Tuning: Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, ChatGLM2)Easy-to-use LLM fine-tun…

pytorch的pixel_shuffle转tflite文件

torch.pixel_shuffle()是pytorch里面上采样比较常用的方法,但是和tensoflow的depth_to_space不是完全一样的,虽然看起来功能很像,但是细微是有差异的 def tf_pixelshuffle(input, upscale_factor):temp []depth upscale_factor *upscale_f…

项目集成七牛云存储sdk

以PHP为例 第一步:下载sdk PHP SDK_SDK 下载_对象存储 - 七牛开发者中心 sdk下载成功之后,将sdk放入项目中,目录选择以自己项目实际情况而定。 注意:在examples目录中有各种上传文件的参考示例,这里我们主要参考的是…

朴素贝叶斯深度解码:从原理到深度学习应用

目录 一、简介贝叶斯定理的历史和重要性定义例子 朴素贝叶斯分类器的应用场景定义例子常见应用场景 二、贝叶斯定理基础条件概率定义例子 贝叶斯公式定义例子 三、朴素贝叶斯算法原理基本构成定义例子 分类过程定义例子 不同变体定义例子 四、朴素贝叶斯的种类高斯朴素贝叶斯&a…

[Framework] Android Binder 工作原理

Binder 是 Android 系统中主要的 IPC 通信方式,其性能非常优异。但是包括我在内的很多开发者都对它望而却步,确实比较难,每次都是看了忘,忘了看,但是随着工作的时间约来越长,每次看也都对 Binder 有新的认识…

Machine Learning(study notes)

There is no studying without going crazy Studying alwats drives us crazy 文章目录 DefineMachine LearningSupervised Learning(监督学习)Regression problemClassidication Unspervised LearningClustering StudyModel representation&#xff08…

IntelliJ IDEA 左侧Commit栏不见了

1.点击File->Settings->Version Control->Commit 2.勾选Use non-modal commit interface

Git 学习(2)

Git 学习(2) 版本号 Git 中文件的版本号是 40 位十六进制的数字字符串,采用 SHA-1 加密算法计算获得 这样一方面可避免在合并时的冲突问题 另一方面可以用于文件定位,其中前两位表示文件夹,后 38 位表示文件 指令介…

阿里云网络、数据中心和服务器技术创新优势说明

阿里云服务器技术创新、网络技术创新、数据中心技术创新和智能运维:云服务器方升架构、自研硬件、自研存储硬件AliFlash和异构计算加速平台,以及全自研网络系统技术创新和数据中心巴拿马电源、液冷技术等技术创新说明,阿里云百科aliyunbaike.…

游戏设计模式专栏(一):工厂方法模式

引言 大家好,我是亿元程序员,一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》,让糟糕的代码在潜移默化中升华,欢迎大家关注分享收藏订阅。 在游戏开发中,代码的组织和结构对于项目的可…

maven找不到jar包

配置settings.xml文件之后出现报错找不到jar包 先改maven设置: 然后在重新清理构建项目: 可以通过执行以下命令清理本地 Maven 仓库 mvn dependency:purge-local-repository

Java 实现前端数据的导出操作

前端 <el-button class"export" type"primary" icon"el-icon-download" click"exportData()">导出</el-button>exportData() {//data 操作data 变成后端需要的格式let data {capacityVos: resultVo}this.$confirm("…

服务器补丁管理软件

随着漏洞的不断上升&#xff0c;服务器修补是增强企业网络安全的典型特征。作为业务关键型机器&#xff0c;计划服务器维护的停机时间无疑是一件麻烦事。但是&#xff0c;借助高效的服务器补丁管理软件&#xff08;如 Patch Manager Plus&#xff09;&#xff0c;管理员可以利用…

FileManager/本地文件增删改查, Cache/图像缓存处理 的操作

1. FileManager 本地文件管理器&#xff0c;增删改查文件 1.1 实现 // 本地文件管理器 class LocalFileManager{// 单例模式static let instance LocalFileManager()let folderName "MyApp_Images"init() {createFolderIfNeeded()}// 创建特定应用的文件夹func cr…

JavaScript Web APIs第一天笔记

复习&#xff1a; splice() 方法用于添加或删除数组中的元素。 **注意&#xff1a;**这种方法会改变原始数组。 删除数组&#xff1a; splice(起始位置&#xff0c; 删除的个数) 比如&#xff1a;1 let arr [red, green, blue] arr.splice(1,1) // 删除green元素 consol…

数字乡村包括哪些方面?数字乡村应用介绍

数字乡村是指利用物联网、数字化和智能化技术&#xff0c;借助现代数字智能产品、高效信息服务和物联网基础设施&#xff0c;以提高农村居民生活质量&#xff0c;助力拓展经济发展前景。 创建数字村庄有助于缩小城乡社区之间的差距&#xff0c;保障每个人都能平等地享受科技发展…

flask_apscheduler实现定时推送飞书消息

需求场景&#xff1a; 实现一个flask服务&#xff0c;通过接口控制一个定时任务任务&#xff08;对酒店订房情况进行检查&#xff09;的开启和停止。要求定时任务完成后&#xff0c;可以通过飞书机器人推送任务完成的消息。 展现效果&#xff1a; 启动定时任务 关闭定时任务…

【2023研电赛】华东赛区一等奖:电动叉车永磁同步电机MTPA及弱磁控制研究

本文为2023年第十八届中国研究生电子设计华东赛区一等奖竞赛作品分享&#xff0c;参加极术社区的【有奖活动】分享2023研电赛作品扩大影响力&#xff0c;更有丰富电子礼品等你来领&#xff01;&#xff0c;分享2023研电赛作品扩大影响力&#xff0c;更有丰富电子礼品等你来领&a…

ChatGPT AIGC 总结Vlookup的20种不同用法

Vlookup是Excel中最常见的函数。接下来我们让ChatGPT,AIGC总结Vlookup函数的用法 。 1. 基本的VLOOKUP用法:=VLOOKUP("John", A2:B5, 2, FALSE)。在A2:B5范围中查找"John",返回与"John"在同一行的第2列的值。例如,查找员工姓名,返回员工ID。…

完整指南:如何使用 Node.js 复制文件

文件拷贝指的是将一个文件的数据复制到另一个文件中&#xff0c;使目标文件与源文件内容一致。Node.js 提供了文件系统模块 fs&#xff0c;通过该模块可以访问文件系统&#xff0c;实现文件操作&#xff0c;包括拷贝文件。 Node.js 中文件拷贝方法 在 Node.js 中&#xff0c;有…