OpenAI ChatGPT API 文档之 Embedding

译者注:

Embedding 直接翻译为嵌入似乎不太恰当,于是问了一下 ChatGPT,它的回复如下:

在自然语言处理和机器学习领域,"embeddings" 是指将单词、短语或文本转换成连续向量空间的过程。这个向量空间通常被称为嵌入空间(embedding space),而生成的向量则称为嵌入向量(embedding vector)或向量嵌入(vector embedding)。

嵌入向量可以捕获单词、短语或文本的语义信息,使得它们可以在数学上进行比较和计算。这种比较和计算在自然语言处理和机器学习中经常被用于各种任务,例如文本分类、语义搜索、词语相似性计算等。

在中文语境下,"embeddings" 通常被翻译为 "词向量" 或者 "向量表示"。这些翻译强调了嵌入向量的特点,即将词汇转换成向量,并表示为嵌入空间中的点。

在本文档中,Embedding 表示名词时大部多没有翻译直接用了英文,embedding vector 翻译为了“嵌入向量”,表示动词时翻译为了“向量表示”,翻译的比较仓促,如果有不恰当的地方,欢迎评论指正。

本篇文档翻译时间为 20230403,请注意时效性。

其他已翻译文档链接:

  • IvyLee:OpenAI ChatGPT API 指南之 Chat Completion Beta 版
  • IvyLee:OpenAI ChatGPT API 指南之语音转文字 Beta 版
  • IvyLee:OpenAI ChatGPT API 文档之生产最佳实践
  • IvyLee:OpenAI ChatGPT API 文档之 Embedding
  • IvyLee:OpenAI ChatGPT API 文档之 Fine-tuning(微调)

什么是 Embedding?

OpenAI 中的文本 Embedding 衡量文本字符串之间的相关性。Embedding 通常用于以下场景:

  • 搜索(结果按查询字符串的相关性进行排序)
  • 聚类(将文本字符串按相似性分组)
  • 推荐(推荐具有相关文本字符串的项目)
  • 异常检测(识别相关性较小的异常值)
  • 多样性测量(分析相似度分布)
  • 分类(文本字符串按其最相似的标签进行分类)

Embedding 是一个浮点数向量(列表)。两个向量之间的距离用于测量它们之间的相关性。较小距离表示高相关性,较大距离表示低相关性。

请访问我们的定价页面了解 Embedding 的定价。请求的计费基于发送的输入中的 token 数。

要了解 Embedding 的实际应用,请查看我们的代码示例(浏览示例

  • 分类
  • 主题聚类
  • 搜索
  • 推荐

如何获取 Embedding

要获取 Embedding,将文本字符串和选定的 Embedding 模型 ID(例如 text-embedding-ada-002)发送到 Embedding API 端点。获得的响应中将包含一个 Embedding,你可以提取、保存和使用。

请求示例:

response = openai.Embedding.create(input="Your text string goes here",model="text-embedding-ada-002"
)
embeddings = response['data'][0]['embedding']

响应示例:

{"data": [{"embedding": [-0.006929283495992422,-0.005336422007530928,...-4.547132266452536e-05,-0.024047505110502243],"index": 0,"object": "embedding"}],"model": "text-embedding-ada-002","object": "list","usage": {"prompt_tokens": 5,"total_tokens": 5}
}

在 OpenAI Cookbook 中可以找到更多 Python 代码示例。

使用 OpenAI Embedding 时,请注意其限制和风险。

Embedding 模型

OpenAI 提供了一个第二代 Embedding 模型(在模型 ID 中标记为 -002)和 16 个第一代模型(在模型 ID 中标记为 -001)。

几乎所有用例我们都推荐使用 text-embedding-ada-002。这一模型更好、更便宜、更简单易用。相关信息可以阅读博客文章中的公告。

模型版本分词器最大输入 token 数知识截断日期
V2cl100k_base8191Sep 2021
V1GPT-2/GPT-32046Aug 2020

按输入 token 计费,费率为每 1000 个 token 0.0004 美元,约为每美元 3000 页(假设每页约 800 个 token):

模型每美元大约页数在 BEIR 搜索评估中的示例性能
text-embedding-ada-002300053.9
davinci-001652.8
curie-0016050.9
babbage-00124050.4
ada-00130049.0

第二代模型

模型名称分词器最大输入 token 数输出维度
text-embedding-ada-002cl100k_base81911536

第一代模型(不推荐使用)

所有第一代模型(以 -001 结尾的模型)均使用 GPT-3 分词器,最大输入为 2046 个 token。

第一代 Embedding 由五种不同的模型系列生成,针对三种不同的任务进行调整:文本搜索、文本相似度和代码搜索。其中搜索模型都有两个:一个用于短查询,一个用于长文档。每个系列包括不同质量和速度的四个模型:

模型输出维度
Ada1024
Babbage2048
Curie4096
Davinci12288

Davinci 是能力最强的,但比起其他模型来,更慢更昂贵。Ada 能力最弱,但明显更快更便宜。

相似性模型

相似性模型最擅长捕捉文本之间的语义相似性。

使用场景可用模型
Clustering, regression, anomaly detection, visualizationtext-similarity-ada-001
text-similarity-babbage-001
text-similarity-curie-001
text-similarity-davinci-001

文本搜索模型

文本搜索模型有助于衡量哪些长文档与短搜索查询最相关。使用两种模型:一种用于将搜索查询向量表示,另一种用于将要排序的文档向量表示。与查询 Embedding 最接近的文档 Embedding 应该是最相关的。

使用场景可用模型
Search, context relevance, information retrievaltext-search-ada-doc-001
text-search-ada-query-001
text-search-babbage-doc-001
text-search-babbage-query-001
text-search-curie-doc-001
text-search-curie-query-001
text-search-davinci-doc-001
text-search-davinci-query-001

代码搜索模型

与搜索模型一样,有两种类型:一种用于向量表示自然语言搜索查询,另一种用于向量表示代码片段以进行检索。

使用场景可用模型
Code search and relevancecode-search-ada-code-001
code-search-ada-text-001
code-search-babbage-code-001
code-search-babbage-text-001
对于  -001 文本 Embedding(不是  -002 ,也不是代码 Embedding),建议将输入中的换行符(  \n)替换为一个空格,因为我们发现存在换行符时,结果会更差。

使用场景

这里展示了一些典型的使用场景,我们将在以下示例中使用亚马逊美食评论数据集。

获取 Embedding

该数据集包含截至 2012 年 10 月,亚马逊用户留下的共计 568454 条食品评论。我们将使用最近的 1000 条评论作为示例。这些评论是用英文撰写的,倾向有积极有消极。每个评论都有一个产品 ID、用户 ID、评分(SCORE)、评论标题(SUMMARY)和评论正文(TEXT)。例如:

PRODUCT IDUSER IDSCORESUMMARYTEXT
B001E4KFG0A3SGXH7AUHU8GW5Good Quality Dog FoodI have bought several of the Vitality canned...
B00813GRG4A1D87F6ZCVE5NK1Not as AdvertisedProduct arrived labeled as Jumbo Salted Peanut...

我们把评论摘要和评论文本合并为一个组合文本。模型将对这一组合文本进行编码,输出一个向量 Embedding。

Obtain_dataset.ipynb

def get_embedding(text, model="text-embedding-ada-002"):text = text.replace("\\n", " ")return openai.Embedding.create(input = [text], model=model)['data'][0]['embedding']df['ada_embedding'] = df.combined.apply(lambda x: get_embedding(x, model='text-embedding-ada-002'))
df.to_csv('output/embedded_1k_reviews.csv', index=False)

要从已保存的文件中加载数据,可以运行以下命令:

import pandas as pddf = pd.read_csv('output/embedded_1k_reviews.csv')
df['ada_embedding'] = df.ada_embedding.apply(eval).apply(np.array)

二维数据可视化

Visualizing_embeddings_in_2D.ipynb

Embedding 的大小随着底层模型的复杂性而变化。为了可视化这些高维数据,我们使用 t-SNE 算法将数据转换为二维数据。

根据评价者所给出的星级评分来给评论着色:

  • 1星:红色
  • 2星:橙色
  • 3星:金色
  • 4星:青绿色
  • 5星:深绿色

可视化似乎产生了大约 3 个集群,其中一个集群的大部分都是负面评论。

import pandas as pd
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import matplotlibdf = pd.read_csv('output/embedded_1k_reviews.csv')
matrix = df.ada_embedding.apply(eval).to_list()# Create a t-SNE model and transform the data
tsne = TSNE(n_components=2, perplexity=15, random_state=42, init='random', learning_rate=200)
vis_dims = tsne.fit_transform(matrix)colors = ["red", "darkorange", "gold", "turquiose", "darkgreen"]
x = [x for x,y in vis_dims]
y = [y for x,y in vis_dims]
color_indices = df.Score.values - 1colormap = matplotlib.colors.ListedColormap(colors)
plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3)
plt.title("Amazon ratings visualized in language using t-SNE")

将 Embedding 用作 ML 算法的文本特征编码器

Regression_using_embeddings.ipynb

Embedding 可以被用作机器学习模型中的通用自由文本特征编码器。如果一些相关输入是自由文本,将 Embedding 加入模型会提高机器学习模型的性能。Embedding 也可以被用作机器学习模型中的分类特征编码器。如果分类变量的名称有意义且数量众多,比如“工作职称”,这将会增加最大的价值。相似性 Embedding 通常比搜索 Embedding 在这个任务上表现更好。

我们观察到向量表示通常都非常丰富和信息密集。使用 SVD 或 PCA 将输入的维度降低 10%,通常会导致特定任务的下游性能变差。

这段代码将数据分为训练集和测试集,将用于以下两个案例,即回归和分类。

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(list(df.ada_embedding.values),df.Score,test_size = 0.2,random_state=42
)

使用 Embedding 特征进行回归

Embedding 提供了一种优雅的方法来预测数值。在这个例子中,我们基于评论文本预测评论者的星级评分。由于 Embedding 内包含的语义信息很高,即使只有很少的评论,预测结果也很不错。

我们假设分数是在 1 到 5 之间的连续变量,允许算法预测浮点数值。机器学习算法通过最小化预测值与真实分数之间的距离,实现了平均绝对误差为 0.39,这意味着还不到半个星级。

from sklearn.ensemble import RandomForestRegressorrfr = RandomForestRegressor(n_estimators=100)
rfr.fit(X_train, y_train)
preds = rfr.predict(X_test)

使用 Embedding 特征进行分类

使用 Embedding 进行分类.ipynb

这次,不是让算法预测 1 到 5 之间的任意值,而是尝试将评价的精确星级分类为 5 个 bucket,从 1 星到 5 星。

经过训练后,模型可以学习到更好地预测 1 星和 5 星的评论,因为这两者情感表达更加极端,对于情感比较微妙的评论(2-4 星),可能学习效果较差。

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_scoreclf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
preds = clf.predict(X_test)

零样本分类

使用 Embedding 进行零样本分类.ipynb

我们可以使用 Embedding 进行零样本分类,无需任何标记的训练数据。对于每个类别,我们将类别名称或类别的简短描述进行向量表示。要以零样本的方式对一些新文本进行分类,只需要将新文本的 Embedding 与所有类别 Embedding 进行比较,预测具有最高相似度的类别。

from openai.embeddings_utils import cosine_similarity, get_embeddingdf= df[df.Score!=3]
df['sentiment'] = df.Score.replace({1:'negative', 2:'negative', 4:'positive', 5:'positive'})labels = ['negative', 'positive']
label_embeddings = [get_embedding(label, model=model) for label in labels]def label_score(review_embedding, label_embeddings):return cosine_similarity(review_embedding, label_embeddings[1]) - cosine_similarity(review_embedding, label_embeddings[0])prediction = 'positive' if label_score('Sample Review', label_embeddings) > 0 else 'negative'

获取用户和产品的 Embedding 用于冷启动推荐

User_and_product_embeddings.ipynb

可以通过对某一用户的所有评论进行平均来获得该用户的 Embedding,通过对有关某产品的所有评论进行平均来获得该产品的 Embedding。为了展示这种方法的实用性,我们使用了包含 50k 个评论的子集以覆盖更多用户和产品的评论。

我们在单独的测试集上评估这些 Embedding 的有用性,将用户和产品 Embedding 的相似性绘制为评分的函数。有趣的是,基于这种方法,在用户收到产品之前,我们就可以预测他们是否会喜欢该产品,获得比随机预测更好的结果。

user_embeddings = df.groupby('UserId').ada_embedding.apply(np.mean)
prod_embeddings = df.groupby('ProductId').ada_embedding.apply(np.mean)

聚类

聚类.ipynb

聚类是理解大量文本数据的一种方法。Embedding 对于此任务很有用,因为它们提供每个文本的语义有意义的向量表示。因此,在无监督的方式下,聚类将揭示数据集中的隐藏分组。

在此示例中,我们发现四个不同的聚类:一个关注狗粮,一个关注负面评论,两个关注正面评论。

import numpy as np
from sklearn.cluster import KMeansmatrix = np.vstack(df.ada_embedding.values)
n_clusters = 4kmeans = KMeans(n_clusters = n_clusters, init='k-means++', random_state=42)
kmeans.fit(matrix)
df['Cluster'] = kmeans.labels_

使用 Embedding 进行文本搜索

使用 Embedding 进行语义文本搜索.ipynb

为了检索出最相关的文档,我们使用查询嵌入向量和文档嵌入向量之间的余弦相似度,返回得分最高的文档。

from openai.embeddings_utils import get_embedding, cosine_similaritydef search_reviews(df, product_description, n=3, pprint=True):embedding = get_embedding(product_description, model='text-embedding-ada-002')df['similarities'] = df.ada_embedding.apply(lambda x: cosine_similarity(x, embedding))res = df.sort_values('similarities', ascending=False).head(n)return resres = search_reviews(df, 'delicious beans', n=3)

使用 Embedding 代码搜索

Code_search.ipynb

代码搜索类似于基于 Embedding 的文本搜索。我们提供了一种从给定代码库的所有 Python 文件中提取 Python 函数的方法。然后每个函数都通过 text-embedding-ada-002 模型进行索引。

为了执行代码搜索,我们使用相同的模型以自然语言将查询进行向量表示。然后,计算查询结果 Embedding 和每个函数 Embedding 之间的余弦相似度。余弦相似度最高的结果最相关。

from openai.embeddings_utils import get_embedding, cosine_similaritydf['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, model='text-embedding-ada-002'))def search_functions(df, code_query, n=3, pprint=True, n_lines=7):embedding = get_embedding(code_query, model='text-embedding-ada-002')df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding))res = df.sort_values('similarities', ascending=False).head(n)return res
res = search_functions(df, 'Completions API tests', n=3)

使用 Embedding 进行推荐

Recommendation_using_embeddings.ipynb

因为嵌入向量之间的距离越短,表示它们之间的相似性越大,所以 Embedding 可以用于推荐系统。

下面我们展示一个基本的推荐系统。它接受一个字符串列表和一个 source 字符串,计算它们的嵌入向量,然后返回一个排序列表,从最相似到最不相似。上面链接的 Notebook 文件中,应用了这个函数的一个版本来处理 AG 新闻数据集(采样到 2000 个新闻文章描述),返回与任何给定 source 文章最相似的前 5 篇文章。

def recommendations_from_strings(strings: List[str],index_of_source_string: int,model="text-embedding-ada-002",
) -> List[int]:"""Return nearest neighbors of a given string."""# get embeddings for all stringsembeddings = [embedding_from_string(string, model=model) for string in strings]# get the embedding of the source stringquery_embedding = embeddings[index_of_source_string]# get distances between the source embedding and other embeddings (function from embeddings_utils.py)distances = distances_from_embeddings(query_embedding, embeddings, distance_metric="cosine")# get indices of nearest neighbors (function from embeddings_utils.py)indices_of_nearest_neighbors = indices_of_nearest_neighbors_from_distances(distances)return indices_of_nearest_neighbors

限制和风险

我们的 Embedding 模型在某些情况下可能不可靠或存在社会风险,并且在没有缓解措施的情况下可能会造成伤害。

社会偏见

限制:模型可能存在某些社会偏见,比如对某些群体的刻板印象或负面情绪。

我们通过运行 SEAT(May et al,2019)和 Winogender(Rudinger et al,2018)基准测试发现了模型存在偏见的证据。这些基准测试共包含 7 个,衡量模型在应用于性别化名称、国家和地区名称和一些刻板印象时是否包含隐含的偏见。

例如,我们发现我们的模型更强烈地将(a)欧洲裔美国人的名字与非洲裔美国人的名字相比,更容易与积极情感联系在一起,以及(b)将负面刻板印象与黑人女性联系在一起。

这些基准测试在多个方面存在限制:(a)它们可能不适用于你特定的使用场景,(b)它们只测试了可能的社会偏见的极小部分。

这些测试只是初步的,我们建议你运行针对自己特定用例的测试。这些结果应被视为该现象存在的证据,而不是针对你的用例的确定性描述。更多详细信息和指导,请参阅我们的使用政策。

如果你有任何问题,请通过聊天联系我们的支持团队。

缺乏对近期事件的认知

限制:模型缺乏对 2020 年 8 月之后发生事件的了解。

我们模型的训练数据,只包含 2020 年 8 月之前的现实世界事件信息。如果你依赖于表示近期事件的模型,那么我们的模型可能会表现欠佳。

常见问题

如何在 Embedding 之前知道一个字符串有多少个 token?

在 Python 中,你可以使用 OpenAI 的分词器 tiktoken 将字符串拆分为 token。

示例代码:

import tiktokendef num_tokens_from_string(string: str, encoding_name: str) -> int:"""Returns the number of tokens in a text string."""encoding = tiktoken.get_encoding(encoding_name)num_tokens = len(encoding.encode(string))return num_tokensnum_tokens_from_string("tiktoken is great!", "cl100k_base")

对于像 text-embedding-ada-002 这样的第二代 Embedding 模型,请使用 cl100k_base 编码。

更多细节和示例代码在 OpenAI Cookbook 指南如何使用 tiktoken 计算 token 数中。

如何快速检索 K 个最近的嵌入向量?

为了快速搜索许多向量,我们建议使用向量数据库。你可以在 GitHub 上的 OpenAI Cookbook 中找到使用向量数据库和 OpenAI API 的示例。

向量数据库选项包括:

  • Pinecone,完全托管的向量数据库
  • Weaviate,开源向量搜索引擎
  • Redis,向量数据库
  • Qdrant,向量搜索引擎
  • Milvus,用于可扩展相似性搜索的向量数据库
  • Chroma,开源的嵌入向量存储

我应该使用哪种距离函数?

我们建议使用余弦相似度。距离函数的选择通常不太重要。

OpenAI Embedding 已标准化为长度 1,这意味着:

  • 余弦相似度可以使用点积更快地计算
  • 余弦相似度和欧几里得距离将产生相同的排名

我能在网上分享我的 Embedding 吗?

客户有模型输入和输出的所有权,对于 Embedding 也一样。你有责任确保你输入到 API 的内容不违反任何适用的法律或我们的《使用条款》。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/144088.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

高效搜索,提升编程效率

一、搜索效率 1.1魔法上网 网址: 一个很变态但可以让你快速学会计算机的方法…………_哔哩哔哩_bilibili 谷歌镜像: https://search.fuyeor.com/zh-cn/Google 谷歌学术: https://link.zhihu.com/?targethttps%3A//scholar.lanfanshu.cn/…

lwip开发指南2

目录 NTP 协议实验NTP 简介NTP 实验硬件设计软件设计下载验证 lwIP 测试网速JPerf 网络测速工具JPerf 网络实验硬件设计软件设计下载验证 HTTP 服务器实验HTTP 协议简介HTTP 服务器实验硬件设计下载验证 网络摄像头(ATK-MC5640)实验ATK-MC5640 简介SCCB …

linux权限机制,

目录 用户与组,id,passwd 查看登录用户whomi,who,w 创建用户 useradd 修改用户信息usermod 删除指定用户userdel 组 ​编辑创建修改删除组groupadd groupmod groupdel 权限 ls-l 修改文件所属用户,所属组 chown,chgrp(change group) 修改权限 chmod 默认权…

FastestDet---原理介绍

1.测试指标 2.算法定位 FastestDet是设计用来接替yolo-fastest系列算法,相比于业界已有的轻量级目标检测算法如yolov5n, yolox-nano, nanoDet, pp-yolo-tiny, FastestDet和这些算法根本不是一个量级,FastestDet无论在速度还是参数量上,都是要小好几个数量级的,但是精度自然…

百度SEO优化不稳定的原因分析(提升网站排名的稳定性)

百度SEO优化不稳定介绍蘑菇号-www.mooogu.cn SEO不稳定是指网站在搜索引擎中的排名不稳定,随着时间的推移会发生变化。这种情况可能会出现在网站页面结构、内容质量、外链质量等方面存在缺陷或不合理之处。因此,优化SEO非常重要,可以提高网站…

基于C++ Qt的积分抽奖系统源码,实现了用户注册、商品购买、积分抽奖等功能

基本介绍 完整代码下载:基于C Qt的积分抽奖系统 这个是我大二上学期的课程作业仓库, 目的是实现一个超市积分抽奖系统, 基本的功能是实现一个能够在超市购物的同时进行抽奖的积分系统, 主要用到的技术栈就是Qt和c, 叠…

git使用过程中出现乱码的解决办法

当我们使用git log或者git diff等git操作时&#xff0c;在终端很可能会遇到乱码&#xff0c;乱码效果如下&#xff1a; <E6><B7><BB><E5><8A><A0><E4><BA><86><E4><B8><80><E4><BA>&…

Canal实现Mysql数据同步至Redis、Elasticsearch

文章目录 1.Canal简介1.1 MySQL主备复制原理1.2 canal工作原理 2.开启MySQL Binlog3.安装Canal3.1 下载Canal3.2 修改配置文件3.3 启动和关闭 4.SpringCloud集成Canal4.1 Canal数据结构![在这里插入图片描述](https://img-blog.csdnimg.cn/c64b40c2231a4ea39a95aac81d771bd1.pn…

正态分布的概率密度函数|正态分布检验|Q-Q图

正态分布的概率密度函数&#xff08;Probability Density Function&#xff0c;简称PDF&#xff09;的函数取值是指在给定的正态分布参数&#xff08;均值 μ 和标准差 σ&#xff09;下&#xff0c;对于特定的随机变量取值 x&#xff0c;计算得到的概率密度值 f(x)。这个值表示…

【linux进程(一)】深入理解进程概念--什么是进程?PCB的底层是什么?

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux进程 1. 前言2. PCB初认…

DeepFace【部署 02】轻量级人脸识别和面部属性分析框架(实时分析+API+Docker部署+命令行接口)

轻量级人脸识别和面部属性分析框架 2.10 Real Time Analysis2.11 API2.12 Dockerized Service2.13 Command Line Interface 2.10 Real Time Analysis 你也可以运行deepface实时视频。流功能将访问您的网络摄像头&#xff0c;并应用面部识别和面部属性分析。如果能连续聚焦5帧&…

服务器性能测试监控平台export+prometheus(普罗米修斯)+grafana搭建

1. export 数据采集工具 简介&#xff1a; export是prometheus是的数据采集组件的总称&#xff0c;它可以将采集到的数据转为prometheus支持的格式 node_export: 用来监控服务器硬件资源的采集器&#xff0c;端口号为9100mysql_export: 用来监控mysql数据库资源的采集器&…

嵌入式数据库sqlite3子句和函数的使用基础(06)

sqlite在上文中讲解了如何实现sqlite3的基本操作增删改查&#xff0c;本文介绍一些其他复杂一点的操作。比如where、order by、having、like、函数等用法。 数据库准备 新建数据库&#xff0c;company.db。设计一个表格employee&#xff0c;内容如下&#xff1a; idnameaged…

培养现货黄金投资的盈利能力

在现货黄金市场中&#xff0c;如何定义投资能否成功&#xff0c;关键的就是看现货黄金投资者的盈利能力&#xff0c;简单来说&#xff0c;就是投资者在市场中能够赚多少钱&#xff0c;这是可以量化的指标。所以每一个现货黄金投资者都渴望提升自己的盈利能力&#xff0c;一方面…

xss原理分析

插入法&#xff0c;弹窗法&#xff0c;事件法 绕过HttpOnly通过找到phpinfo的方式&#xff0c;可以看到cookie

【redis总结】

文章目录 1、redis简介2、为什么要选择redis做缓存3、数据结构4、redis多线程模型redis6.0的变化 5、redis持久化AOF的实现过程RDB的实现过程 6、redis集群的搭建7、 redis过期删除和淘汰策略8、redis的内存淘汰策略 1、redis简介 Redis&#xff08;Remote Dictionary Server&…

华为再放大招!联合伙伴发布AI新人类,助力场景化大模型商用落地

原创 | 文 BFT机器人 随着人工智能技术的不断发展&#xff0c;我们正迎来一个全新的智能时代。在这个时代里&#xff0c;人工智能将在各个领域发挥重要作用&#xff0c;为人类带来更智能、便捷和高效的生活体验。为了加速人工智能的商用落地&#xff0c;华为联合伙伴发布了系列…

无需公网IP,实现公网SSH远程登录MacOS【内网穿透】

目录 前言 1. macOS打开远程登录 2. 局域网内测试ssh远程 3. 公网ssh远程连接macOS 3.1 macOS安装配置cpolar 3.2 获取ssh隧道公网地址 3.3 测试公网ssh远程连接macOS 4. 配置公网固定TCP地址 4.1 保留一个固定TCP端口地址 4.2 配置固定TCP端口地址 5. 使用固定TCP端…

git 过滤不需要提交的目录和文件

项目根目录下&#xff08;.git同级目录&#xff09;添加.gitignore文件 .DS_Store .idea npm-debug.log yarn-error.log /node_modules /log/**.log /config.js

十九,镜面IBL--BRDF积分贴图

再回顾下镜面部分的分割求和近似法 现在关注第二部分 最后可化为 也就是说&#xff0c;这两部分积分可以获得F0的系数和F0的偏差。 这两个值可以存储到BRDF积分贴图的RG部分。void main() { vec2 integratedBRDF IntegrateBRDF(TexCoords.x, TexCoords.y); FragColor …