CodeTON Round 6 (Div 1 + Div 2, Rated, Prizes!)(A - E)

CodeTON Round 6 (Div. 1 + Div. 2, Rated, Prizes!)(A - E)

CodeTON Round 6 (Div. 1 + Div. 2, Rated, Prizes!)

A. MEXanized Array(分类讨论)

可以发现当 n < k 或者 k > x + 1 的时候无法构成 , 其余的时候贪心的用 x 最大化贡献即可 , 注意特判 k == x 的情况。

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n , k , x; signed main(){IOScin >> t;while(t --) {cin >> n >> k >> x;if(n < k || k > x + 1) {cout << "-1\n";} else {int res = 0;int now = k - 1;res += (now + 1) * now / 2;if(k == x) res += (x - 1) * (n - k);else res += x * (n - k);cout << res << "\n";}}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

B. Friendly Arrays(位运算)

观察或运算发现 , 只有当前位为 1 的时候或运算才能对结果产生影响 , 且是把所有数当前位全部变成 1 , 不妨对 n 的奇偶进行讨论 ,模拟完可以发现这样的一个性质 , 当 n 为奇数的时候操作异或和会变大 , 偶数的时候操作异或和会变小 , 所以最大最小值一定是全操作和全不操作的 , 计算即可。

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int n , m , t;
int a[N] , b[N];signed main(){IOScin >> t;while(t --) {cin >> n >> m;int mx = 0 , mn = 0 , k = 0;for(int i = 1 ; i <= n ; i ++) cin >> a[i];for(int i = 1 ; i <= m ; i ++) cin >> b[i] , k |= b[i];for(int i = 1 ; i <= n ; i ++) {mn ^= (a[i] | k);mx ^= a[i];}if(mn > mx) swap(mn , mx);cout << mn << " " << mx << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

C. Colorful Table(思维 ,排序)

不难发现对于每个数来说 , 我们要找大于等于本身的最靠左的位置和最靠右的位置 , 考虑按照值的大小升序排序 , 这样问题就转化成找排序后每个值右边序号的最大值和最小值 , 逆序扫一遍 , 边扫便维护即可。

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n , k , ans[N];
struct node {int x , id;
}a[N];signed main(){IOScin >> t;while(t --) {cin >> n >> k;for(int i = 1 ; i <= n ; i ++) {cin >> a[i].x ;a[i].id = i;}sort(a + 1 , a + 1 + n ,[&](node a, node b){return a.x < b.x;});int mx = -9e18 , mn = 9e18;for(int i = n ; i >= 1 ; i --){int now = a[i].x;int id  = a[i].id;mx = max(mx , id);mn = min(mn , id);ans[now] = (mx - mn + 1) * 2;}for(int i = 1 ; i <= k ; i ++) {cout << ans[i] << " ";ans[i] = 0;}cout << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

D. Prefix Purchase(贪心)

首先不难想到,贪心的取次数最多且最靠右的位置 , 但这样显然不是最优的 , 因为有

3 4 5

11

这种情况 , 我们可以通过替换的方式更充分的利用余数 ,转化一下不难发现如何利用余数的问题和开始要求的问题是一样的(选 4 还是选 5去替换 3 就相当于 k = 2 时 , 选 1 还是 选 2 能让字典序变大) , 不断贪心的选把余数用完即可.

例如 :

3 4 5

11

第一次贪心之后会变成

0 1 2

2

第二次贪心之后会变成

0 0 1

0

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 2e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n , k;
int a[N] , pre[N] , b[N];signed main(){IOScin >> t;while(t --) {cin >> n;pre[0] = 0;for(int i = 1 ; i <= n ; i ++) cin >> a[i] , pre[i] = 0;cin >> k;int id = 0;while(k && id != -1) {int maxx = 0 , id1 = -1;for(int i = n ; i >= id + 1 ; i --) {if((k / a[i]) > maxx) {maxx = k / a[i];id1  = i;} }k -= maxx * a[id1];for(int i = n ; i >= id1 + 1 ; i --) {a[i] -= a[id1];}pre[id]    += maxx;pre[id1]   -= maxx;id = id1;}int sum = 0;for(int i = 1 ; i <= n ; i ++) {sum += pre[i - 1];cout << sum << " ";}cout << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

E. Another MEX Problem(dp)

先考虑 O(n^3) 的解决方法

d p [ i ] [ j ] 表示前 i 个数是否能表示出 j dp[i][j] 表示前 i 个数是否能表示出 j dp[i][j]表示前i个数是否能表示出j

考虑转移

若当前位不选进区间 dp[i][j] = dp[i - 1][j];

若当前位选进区间 , 枚举以当前位为右边界的区间 , 进行转移

dp[i][j] |= dp[l - 1][j ^ mex[l][i]]

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 5e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n ;signed main(){IOScin >> t;while(t --) {cin >> n;		vector<int>a(n + 1);for(int i = 1 ; i <= n ; i ++) {cin >> a[i];}vector<vector<int>>mex(n + 1 , vector<int>(n + 1));vector<vector<bool>>dp(n + 1 , vector<bool>(1 << 13));for(int i = 1 ; i <= n ; i ++) {int now = 0;vector<bool>vis(n + 1);for(int j = i ; j <= n ; j ++) {vis[a[j]] = 1;while(vis[now]) now += 1;mex[i][j] = now;	}}dp[0][0] = 1;for(int i = 1 ; i <= n ; i ++) {//从上一位自然转移dp[i] = dp[i - 1];	for(int l = 1 ; l <= i ; l ++) {for(int k = 0 ; k < (1 << 13) ; k ++) {if(dp[l - 1][k]) dp[i][k ^ mex[l][i]] = 1;}}}int res = 0;for(int i = 0 ; i < (1 << 13) ; i ++) {if(dp[n][i]) res = max(res , i);}cout << res << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

考虑优化:

1:首先对于相同的右边界 , 我们枚举左边界的时候从大到小 , 由于我们是先从大的范围开始枚举 , 所以每个 mex 只更新一次即可。

2.其次对于相同的左边界 , 每个 mex 更新一次即可 。

显然能凑出来的mex的数量级是O(n)的 , 更新次数也是O(n)的

总复杂度

O ( n 2 ) O(n^2) O(n2)

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 5e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;int t , n ;signed main(){IOScin >> t;while(t --) {cin >> n;vector<int>a(n + 1);for(int i = 1 ; i <= n ; i ++) {cin >> a[i];}vector<vector<int>>mex(n + 1 , vector<int>(n + 1));vector<vector<bool>>dp(n + 1 , vector<bool>(1 << 13));for(int i = 1 ; i <= n ; i ++) {int now = 0;vector<bool>vis(n + 1);for(int j = i ; j <= n ; j ++) {vis[a[j]] = 1;while(vis[now]) now += 1;mex[i][j] = now;	}}dp[0][0] = 1;vector<vector<bool>>visl(n + 1 , vector<bool>(1 << 13));vector<vector<bool>>visr(n + 1 , vector<bool>(1 << 13));for(int i = 1 ; i <= n ; i ++) {//从上一位自然转移dp[i] = dp[i - 1];for(int l = i ; l >= 1 ; l --) {if(visr[i][mex[l][i]]) continue;if(visl[l][mex[l][i]]) continue;visl[l][mex[l][i]] = 1;visr[i][mex[l][i]] = 1;for(int k = 0 ; k < (1 << 13) ; k ++) {if(dp[l - 1][k]) dp[i][k ^ mex[l][i]] = 1;}}}int res = 0;for(int i = 0 ; i < (1 << 13) ; i ++) {if(dp[n][i]) res = max(res , i);}cout << res << "\n";}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/143932.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

第十章_祖冲之_圆周率

倒数1又2/3章&#xff0c;keep_writting的一天&#xff1a; 第十章10.1.7 运行程序资源下载网站为何打不开呢&#xff1f;

Linux socket 字节序

socket介绍 字节序 验证什么字节序 #include<stdio.h> int main() {union {short value;char btypes[sizeof(short)];} test;test.value 0x0102;if(test.btypes[0] 1 && test.btypes[1] 2) {printf("大端字节序\n");}else{printf("小端字节序…

JVM111

JVM1 字节码与多语言混合编程 字节码 我们平时说的java字节码&#xff0c; 指的是用java语言编译成的字节码。准确的说任何能在jvm平台上执行的字节码格式都是一样的。所以应该统称为:jvm字节码。不同的编译器&#xff0c;可以编译出相同的字节码文件&#xff0c;字节码文件…

DataExcel控件读取和保存excel xlsx 格式文件

需要引用NPOI库 https://github.com/dotnetcore/NPOI 调用Read 函数将excel读取到dataexcel控件 调用Save 函数将dataexcel控件文件保存为excel文件 using NPOI.HSSF.UserModel; using NPOI.HSSF.Util; using NPOI.SS.UserModel; using NPOI.SS.Util; using System; using …

canvas-绘图库fabric.js简介

一般情况下简单的绘制&#xff0c;其实canvas原生方法也可以满足&#xff0c;比如画个线&#xff0c;绘制个圆形、正方形、加个文案。 let canvas document.getElementById(canvas);canvas.width 1200;canvas.height 600;canvas.style.width 1200px;canvas.style.height 6…

【算法基础】栈和队列及常见变种与使用,双栈、动态栈、栈的迭代器,双端队列、优先队列、并发队列、延迟队列的使用

目录 一、栈&#xff08;Stack&#xff09; 二、 队列&#xff08;Queue&#xff09; 三、栈和队列的常见变种与使用 3.1 栈的常见的变种与使用 3.1.1 最小栈&#xff08;Min Stack&#xff09; 3.1.2 双栈&#xff08;Two Stacks&#xff09; 3.1.3 固定大小栈&#xf…

eclipse svn插件安装

1.进入eclipse的help->Eclipse Marketplace,如下图所示&#xff1a; 2.输入“svn”,再按回车&#xff0c;如下图&#xff1a; 3.这我选择的是 Subversive,点击后面的“install”按钮&#xff0c;如下图 Eclipse 下连接 SVN 库有两种插件 —— Subclipse 与 Subversive &…

开源C# Winform Scada 上位机系统

开源Winform Scada系统 功能展示C#源码程序说明下载程序源码获取 功能展示 本软件目前包含: 常用PLC通讯控件, 常用IO读写控件, 权限过滤, 用户管理, 日志记录, 报警记录. 使用方式: 在VS2022里面拖放控件, 填写控件属性,完成组态.即可成为一个完整的上位机. C#源码 程序说明…

弱信号的采样与频谱分析(修订中...)

1.频谱混叠效应 - 波形数据抽样 这是一组经过抽样的数据的频谱&#xff0c;红圈圈出的两条谱线&#xff0c;是我们需要关注的特征谱线。这个信号与右侧的临近信号比较&#xff0c;求频率比值&#xff0c;比值恒定与理论推导相符。再5取1降低采样率后&#xff0c;大致相同的频率…

宝塔nginx搭建Ftp文件服务器

一&#xff1a;创建FTP 填入账号密码后&#xff0c;选择根目录&#xff0c;这个根目录就是nginx要代理的目录 二&#xff1a;配置nginx root的地址就是上面填的FTP根目录 三&#xff1a;http访问 服务器ip端口号加图片 例如我放了一个320.jp 我服务器ip是110.120.120.120 那…

使用MySQL聚合函数来聚合数据,结果发现有刺客...

问题&#xff1a; 使用MySQL聚合函数 group_concat 的坑&#xff01; 现象&#xff1a; 我有个业务&#xff0c;需要将表中符合条件的数据行的id聚合成一个字符串&#xff0c;以供另外一张表的查询过滤。 SELECTx FROMt_A WHEREFIND_IN_SET(guan_lian,(SELECTgroup_concat( i…

iOS自动化测试方案(一):MacOS虚拟机保姆级安装Xcode教程

文章目录 一、环境准备二、基础软件三、扩展&#xff1a;usb拓展插件 一、环境准备 1、下载VMware虚拟机的壳子&#xff0c;安装并注册软件(可以百度注册码)&#xff0c;最新版本&#xff1a;v17 2、下MacOS系统iOS镜像文件&#xff0c;用于vmware虚拟机安装&#xff0c;当前镜…

Unity WebSocket-Server

&#x1f33c;WebSocket-Server &#x1f96a;效果展示&#x1f32d;启动Server&#x1f371;连接Server &#x1f96a;效果展示 在Unity中创建WebSocket服务器&#xff0c;从网页连接到该服务器进行消息通信&#xff0c;在Unity中接收到的消息都在主线程中 &#x1f32d;启…

RK3588 VDD_NPU电源PCB设计注意事项

1、VDD_NPU的覆铜宽度需满足芯片的电流需求&#xff0c;连接到芯片电源管脚的覆铜足够宽&#xff0c;路径不能被过孔分割太严重&#xff0c;必须计算有效线宽&#xff0c;确认连接到CPU每个电源PIN脚的路径都足够。 2、VDD_NPU的电源在外围换层时&#xff0c;要尽可能的多打电…

计算机,软件工程,网络工程,大数据专业毕业设计选题有哪些(附源码获取)

计算机&#xff0c;软件工程&#xff0c;网络工程&#xff0c;大数据专业毕业设计选题有哪些?&#xff08;附源码获取&#xff09; ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于J…

纽禄美卡Neuromeka亮相美国FABTECH,展示用于焊接的3D视觉协作机器人

原创 | 文 BFT机器人 纽禄美卡Neuromeka公司在由美国精密成型协会、美国焊接协会、化工涂料协会等5大协会举办的美国金属加工及焊接展览会FABTECH上精彩亮相。这家总部位于韩国首尔的公司成立于2013年&#xff0c;是机器人解决方案领域的领先供应商&#xff0c;致力于提高各种…

超大表格组件滚动渲染优化

引用自 摸鱼wiki 背景 业务中需要渲染一个最多有100列的表格&#xff0c;由于表格使用原生dom实现&#xff0c;因此会出现同屏有近1000个单元格同时绘制&#xff0c;在快速滑动时页面会产生卡顿&#xff0c;影响用户体验。 方案 如下图所示&#xff0c;由于用户显示屏区域有…

现代数据中心发明人Luiz André Barroso去世,享年59岁,Jeff Dean、劈柴发推悼念

Luiz Andr Barroso因故去世&#xff0c;享年59岁。他作为现代云计算行业的奠基人&#xff0c;为谷歌的发展做出了不可磨灭的贡献。 数据中心发明人&#xff0c;云计算的奠基人&#xff0c;谷歌22年老兵Luiz Andr Barroso于9月16日意外去世&#xff0c;享年59岁。 谷歌CEO 劈柴…

Docker——认识并安装Docker(上篇)

Docker 一、Docker认识二、Docker功能1、更快速的交付和部署2、更高效的虚拟化3、更轻松的迁移和扩展4、更简单的管理Docker 和 VM 三、学习Docker前的必备知识1、环境配置2、虚拟化部署方式3、虚拟化优点4、虚拟化局限性5、容器与虚拟机的区别6、Docker为什么比VM快&#xff1…

TikTok营销成功秘籍:ROI指标的黄金法则

在当今数字营销领域&#xff0c;TikTok已经崭露头角&#xff0c;成为了品牌和营销者们争相追逐的热门平台。 然而&#xff0c;要在TikTok上取得成功&#xff0c;不仅需要创意和内容&#xff0c;还需要精确的ROI&#xff08;投资回报率&#xff09;指标来衡量和优化你的营销策略…