InnoDB存储引擎

  6.1 逻辑存储结构

InnoDB的逻辑存储结构如下图所示:

312ed1078c324a3299e8a28b4ec469a1.png

6.2 架构

6.2.1 概述

MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

df326ba40baf4659982a9a9082004139.png

6.2.2 内存结构

13f0a4895c6443ccbf4164501a4ddf1c.png

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。 接下来介绍一下这四个部分。

1). Buffer Pool 缓冲池

InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及 InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

  • free page:空闲page链表,未被使用。

  • clean page:被使用page链表,数据没有被修改过。

  • dirty page:脏页,被使用page链表,数据被修改过,也中数据与磁盘的数据产生了不一致。

在专用服务器上,通常将多达80%的物理内存分配给缓冲池 。参数设置: show variables like 'innodb_buffer_pool_size';

af658493c59642d6b437add116e8d573.png

2). Change Buffer

Change Buffer,更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page 没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer 中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

先来看一幅图,这个是二级索引的结构图:

d6fba464afeb4853aa89cf26acd1ba7b.png

对于聚集索引如主键索引,通常来说是按照主键顺序插入的,那么就会顺序操作磁盘IO。与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO,并且是随机的磁盘IO。有了 ChangeBuffer之后,不用每一次都操作磁盘IO,先去操作Change Buffer,再以一定频率同步到Buffer Pool,再刷新到磁盘当中。减少了磁盘IO,提高了效率。

3). Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持 hash索引,但是给我们提供了一个功能就是这个自适应hash索引。因为前面我们讲到过,hash索引在进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等,只适合做等值匹配的操作。

InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度, 则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成。

参数: adaptive_hash_index

4). Log Buffer

Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log), 默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘 I/O。

参数:

innodb_log_buffer_size:缓冲区大小

innodb_flush_log_at_trx_commit:日志刷新到磁盘时机,取值主要包含以下三个:

  • 1: 日志在每次事务提交时写入并刷新到磁盘,默认值。

  • 0: 每秒将日志写入并刷新到磁盘一次。

  • 2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。

6457da18ea884f5ba67b62a090b90984.png

6.2.3 磁盘结构

接下来,再来看看InnoDB体系结构的右边部分,也就是磁盘结构:

30c945c22dde45e2892311e333e6d647.png

1). System Tablespace 系统表空间

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)。

参数:innodb_data_file_path

29bd6da0d38e41e69816f65fb675056c.png

系统表空间,默认的文件名叫 ibdata1。

2). File-Per-Table Tablespaces 每个表文件空间

如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table ,该参数默认开启。

4b0ba5972e004a5cb64874a5b30681b4.png

那也就是说,我们每创建一个表,都会产生一个表空间文件,如图:

bea50ce52cde4d0ea5466221e92ffce7.png

3). General Tablespaces

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

A. 创建表空间

CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;

0d89022ef23340bb9533e625ae7021b4.png

B. 创建表时指定表空间

CREATE TABLE xxx ... TABLESPACE ts_name;

92bde397e9264dde943f85001167b3c5.png

4). Undo Tablespaces

撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储 undo log日志。

5). Temporary Tablespaces

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

6). Doublewrite Buffer Files

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

670a993d94a247fb804c66e0ac10f9b5.png

7). Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log), 前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

以循环方式写入重做日志文件,涉及两个文件:

c6b292498a27456f98b152a142d49b5a.png

前面我们介绍了InnoDB的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些InnoDB中涉及到的后台线程。

55eb46b349fe48d69cf62e247c8d617d.png

6.2.4 后台线程

作用:将InnoDB存储引擎的缓冲池当中的数据在合适的时机刷新到磁盘文件当中。

c48fb2d09cf847b2a9127917851d7f15.png

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、 Page Cleaner Thread。

1). Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收 。

2). IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

线程类型默认个数职责
Read thread4负责读操作
Write thread4负责写操作
Log thread1负责将日志缓冲区刷新到磁盘
Insert buffer thread1负责将写缓冲区内容刷新到磁盘

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息。

show engine innodb status \G;

06101a0106c74033a12a48ded013516a.png

3). Purge Thread

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

4). Page Cleaner Thread

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

6.3 事务原理

6.3.1 事务基础

1). 事务

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

2). 特性ACID

  • 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

69569757066d42c8a2656a30a980d568.png

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的锁,加上MVCC来保证的。

0b37d0271a2d4688a6a168e7bb9a9075.png

我们在讲解事务原理的时候,主要就是来研究一下redolog,undolog以及MVCC。

6.3.2 redo log

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。

该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的?我们一起来分析一下。

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘 中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

8b6cadd08acc402d8b9bb8fd240c4b86.png

那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一 下,通过redolog如何解决这个问题。

1dd6103ad4dc42d9b06ffe20ec10f37a.png

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。 过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在 往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这种先写日志的方式,称之为 WAL(Write-Ahead Logging)。

6.3.3 undo log

回滚日志,用于记录数据被修改前的信息 , 作用包含两个 : 提供回滚(保证事务的原子性) 和 MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的 update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。

Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment 回滚段中,内部包含1024个undo log segment。

6.4 MVCC

高频面试考点

6.4.1 基本概念

1). 当前读

读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:select ... lock in share mode(共享锁),select ... for update、update、insert、delete(排他锁)都是一种当前读。

测试:

b62f826c5e0b498f84cff63fdc8d4151.png

在测试中我们可以看到,即使是在默认的RR隔离级别下,事务A中依然可以读取到事务B最新提交的内容,因为在查询语句后面加上了 lock in share mode 共享锁,此时是当前读操作。当然,当我们加排他锁的时候,也是当前读操作。

2). 快照读

简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

Read Committed:每次select,都生成一个快照读。

Repeatable Read:开启事务后第一个select语句才是快照读的地方。

Serializable:快照读会退化为当前读。

测试:

74ddffbaafa44ffb989a5acc223a8a28.png

在测试中,我们看到即使事务B提交了数据,事务A中也查询不到。 原因就是因为普通的select是快照读,而在当前默认的RR隔离级别下,开启事务后第一个select语句才是快照读的地方,后面执行相同 的select语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。

3). MVCC

全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本, 使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。

MVCC作用:在快照读的时候要通过MVCC来查找对应的历史版本。

MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

接下来,我们再来介绍一下InnoDB引擎的表中涉及到的隐藏字段 、undolog 以及 readview,从而来介绍一下MVCC的原理。

6.4.2 隐藏字段

dc7b08d0121e49aa9d7ff62b853f8c37.png

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

隐藏字段含义
DB_TRX_ID最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTR回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版 本。
DB_ROW_ID隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键, 如果有主键,则不会添加该隐藏字段。

6.4.3 undolog

6.4.3.1 介绍

回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。

而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。

6.4.3.2 版本链

有一张表原始数据为:

cce79a66642a4385a88fac59d94707b6.png

DB_TRX_ID : 代表最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID,是自增的。

DB_ROLL_PTR : 由于这条数据是才插入的,没有被更新过,所以该字段值为null。

然后,有四个并发事务同时在访问这张表。

A. 第一步

44be7a386c4c4669a704c733edaccb9b.png

当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子; 然后更新记录, 并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

a94bc53320d84a46827b4d94e175ca76.png

B.第二步

3072f9c4bfa2490c8cdb5eaf562dadf8.png

当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

4821207908294683891f0fa6bf3b68f6.png

C. 第三步

ae59bac4ebdc43949d87d11b13b740f8.png

当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

45072e0051fd42518e35f28ba31d3722.png

最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

6.4.4 readview

ReadView(读视图)是快照读SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务 (未提交的)id。

ReadView中包含了四个核心字段:

字段含义
m_ids当前活跃的事务ID集合
min_trx_id最小活跃事务ID
max_trx_id预分配事务ID,当前最大事务ID+1(因为事务ID是自增的)
creator_trx_idReadView创建者的事务ID

而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

条件是否可以访问说明
trx_id == creator_trx_id可以访问该版本成立,说明数据是当前这个事务更改的。
trx_id < min_trx_id可以访问该版本成立,说明数据已经提交了。
trx_id > max_trx_id不可以访问该版本成立,说明该事务是在 ReadView生成后才开启。
min_trx_id <= trx_id <= max_trx_id如果trx_id不在m_ids中, 是可以访问该版本的成立,说明数据已经提交。

不同的隔离级别,生成ReadView的时机不同:

  • READ COMMITTED :在事务中每一次执行快照读时生成ReadView。

  • REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

6.4.5 原理分析

6.4.5.1 RC隔离级别

RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读 都会生成一个ReadView,那么两次生成的ReadView如下。

08a30638fcb14d6388ac99ac1ec8c82e.png

那么这两次快照读在获取数据时,就需要根据所生成的ReadView以及ReadView的版本链访问规则, 到undolog版本链中匹配数据,最终决定此次快照读返回的数据。

A. 先来看第一次快照读具体的读取过程:

d2c1cd67b13749329f789dd9cbd4b8a9.png

7fd6074359c142e5bf02cf88eb847b1a.png

B. 再来看第二次快照读具体的读取过程:

c01aa491200441b38a857cf424c79de7.png

6367141284cb4badb8df9d697dd99923.png

6.4.5.2 RR隔离级别

RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。 而RR 是可 重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。

那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了

d54f2e9d551a4c22a6828ac8ca16f5dd.png

我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该 ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返 回的结果也是一样的。

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView 来实现的。 而MVCC + 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。

3d97ecf7924f4556a02a5e91eaf5fc45.png

总结:

23f44301fc3646cf86639dcd1fe7248d.png

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/14350.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用.bat实现快速电脑关机?

1、在电脑桌面新建一个记事本文档&#xff0c;将如下内容写进去&#xff1a; echo off shutdown /s /t 02、然后&#xff0c;保存一下&#xff0c;再把桌面此文件重命名为电脑关机.bat 3、双击此程序&#xff0c;可以立刻关机电脑。 PS&#xff1a;① 此程序会不保存任何当前…

表的设计(MYSQL)

表的设计方法 范式 第一范式 第二范式 第三范式 实现方式 程序实现

【再谈设计模式】抽象工厂模式~对象创建的统筹者

一、引言 在软件开发的世界里&#xff0c;高效、灵活且易于维护的代码结构是每个开发者追求的目标。设计模式就像是建筑蓝图中的经典方案&#xff0c;为我们提供了应对各种常见问题的有效策略。其中&#xff0c;抽象工厂模式在对象创建方面扮演着重要的角色&#xff0c;它如同一…

R语言机器学习与临床预测模型77--机器学习预测常用R语言包

R小盐准备介绍R语言机器学习与预测模型的学习笔记 你想要的R语言学习资料都在这里&#xff0c; 快来收藏关注【科研私家菜】 01 预测模型常用R包 常见回归分析包: rpart 包含有分类回归树的方法; earth 包可以实现多元自适应样条回归; mgev包含广义加性模型回归; Rweka 包中的M…

使用OpenGL ES简单实现一个特效

玩抖音的时候&#xff0c;刷到一个抖音红发GET特效&#xff0c;感觉实现起来应该不太难。 于是小试牛刀。以刷到的一个视频一帧为原图 抖音红发GET特效拍出来的效果为 我实现的效果为&#xff1a; 基于Android平台&#xff0c;以OpenGL ES为工具&#xff0c;开发了一个滤镜…

豆包MarsCode算法题:数组元素之和最小化

数组元素之和最小化 问题描述思路分析分析思路解决方案 参考代码&#xff08;Python&#xff09;代码分析1. solution 函数2. 计算 1 2 3 ... n 的和3. 乘以 k 得到最终的数组元素之和4. 主程序&#xff08;if __name__ __main__:&#xff09;代码的时间复杂度分析&#x…

WebRTC视频 05 - 视频采集类 VideoCaptureDS 下篇

WebRTC视频 01 - 视频采集整体架构 WebRTC视频 02 - 视频采集类 VideoCaptureModule WebRTC视频 03 - 视频采集类 VideoCaptureDS 上篇 WebRTC视频 04 - 视频采集类 VideoCaptureDS 中篇 WebRTC视频 05 - 视频采集类 VideoCaptureDS 下篇&#xff08;本文&#xff09; 一、前言…

ffmpeg 最强大的视频工具

文章目录 一、ffmpeg安装二、基本用法1、文件格式转换2、视频过滤器 filter3、剪切4、合并5、音频过滤器6、删除轨道7、简单应用&#xff1a;录屏 一、ffmpeg安装 windows下可以上官网 https://www.ffmpeg.org/download.html下载&#xff1a; 下载好后&#xff0c;解压缩&…

初识算法 · 位运算(2)

目录 前言&#xff1a; 判定字符是否唯一 丢失的数字 比特位计数 只出现一次的数字III 前言&#xff1a; ​本文的主题是位运算&#xff0c;通过四道题目讲解&#xff0c;一道是判断字符是否唯一&#xff0c;一道是只出现一次的数字III&#xff0c;一道是比特位计数&…

大数据新视界 -- 大数据大厂之 Impala 性能优化:基于数据特征的存储格式选择(上)(19/30)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

[产品管理-76]:延续是创新与颠覆式创新的比较

目录 一、概述 1、定义与特征 2、市场影响与竞争策略 3、实施难度与风险 4、案例分析 二、示例 1. 延续性创新示例 2. 创新示例 3. 颠覆式创新示例 一、概述 延续性创新与颠覆式创新是技术创新领域的两种重要策略&#xff0c;它们在多个方面存在显著差异。 以下是对…

JAVA学习日记(十五) 数据结构

一、数据结构概述 数据结构是计算机底层存储、组织数据的方式。 数据结构是指数据相互之间以什么方式排列在一起的。 数据结构是为了更加方便的管理和使用数据&#xff0c;需要结合具体的业务场景来进行选择。 二、常见的数据结构 &#xff08;一&#xff09;栈 特点&…

自动化测试工具Ranorex Studio(三十)-代码模块中使用变量快照

为了在代码模块中使用数据连接器提供的值&#xff0c;你需要在代码中添加一个变量。使用右键菜单项’Insert Module Variable’。 添加一个新的变量到您的代码模块 指定变量名和默认值 通过添加一个新的变量&#xff0c;Ranorex Studio 会在光标位置插入一段新代码——由一个…

Python技巧:查询模块的版本号的方法

1,pycharm里面的 Python interpreter 或者 Python package 2&#xff0c;通过 __version_info__ import matplotlib print(matplotlib.__version_info__) 3&#xff0c;查看目录里面的 _version.py 文件

​​​​​​​15TS Series TVS 的解析

15TS Series 1500W Transient Voltage Suppresso指的是一系列高性能的瞬态电压抑制二极管&#xff08;Transient Voltage Suppressor&#xff0c;TVS&#xff09;&#xff0c;这些二极管由时源芯微&#xff08;TimeSource&#xff09;设计用于保护敏感的电子设备免受瞬态过电压…

Python学习从0到1 day27 Python 高阶技巧 ① 闭包

目录 一、闭包 作用 示例 二、nonlocal关键字 示例 三、atm取钱的闭包实现 四、闭包注意事项 优点 缺点 我陪你走了一段路&#xff0c;你最了解我不是吗 —— 24.11.11 一、闭包 在函数嵌套的前提下&#xff0c;内部函数使用了外部函数的变量&#xff0c;并且外部函数返回了内部…

python成长技能之网络编程

文章目录 一、初识Socket1.1 什么是 Socket?1.2 socket的基本操作1.3 socket常用函数 二、基于UDP实现客户端与服务端通信三、基于TCP实现客户端与服务端通信四、使用requests模块发送http请求 一、初识Socket 1.1 什么是 Socket? Socket又称"套接字"&#xff0c;…

[ACTF2020 新生赛]Upload 1--详细解析

信息收集 题目告诉我们是一道upload&#xff0c;也就是文件上传漏洞题目。 进入界面&#xff0c;是一个灯泡&#xff0c;将鼠标放在图标上就会出现文件上传的相应位置&#xff1a; 思路 文件上传漏洞&#xff0c;先看看有没有前端校验。 在js源码中找到了前端校验&#xff…

光伏设计软件怎么选?有哪些推荐?

在光伏电站的开发建设中&#xff0c;专业设计软件是提升电站能效、降低开发成本的重要工具。市场上存在许多优秀的光伏设计软件&#xff0c;能够通过还原现状和三维建模来呈现出最符合实际需求的设计方案&#xff0c;究竟该怎么选呢&#xff1f; -易用性&#xff1a;一些软件操…

刷题强训(day06) -- 大数加法、链表相加、大数乘法

目录 1、大数加法 1.1 题目 1.2 思路 1.3 代码实现 2、链表相加&#xff08;二&#xff09; 2.1 题目 2.2 思路 2.3 代码实现 3、大数乘法 3.1 题目 3.2 思路 3.3 代码实现 1、大数加法 1.1 题目 1.2 思路 这道题可以模拟列竖式相加解答&#xff0c; 将每一位都转…