论文5—《基于改进YOLOv5s的轻量化金银花识别方法》文献阅读分析报告

论文报告:基于改进YOLOv5s的轻量化金银花识别方法

论文报告文档

基于改进YOLOv5s的轻量化金银花识别方法

  • 论文报告文档
    • 摘要
    • 国内外研究现状
      • 国内研究现状
      • 国外研究现状
    • 研究目的
    • 研究问题
    • 使用的研究方法
    • 试验研究结果
    • 文献结论
    • 创新点和对现有研究的贡献
      • 1. 目标检测技术
      • 2. 深度学习与农业应用
      • 3. 模型轻量化
      • 4. 特征融合与上采样技术

摘要

本文提出了一种基于改进YOLOv5s的轻量化金银花识别方法,旨在提高金银花采摘机器人的工作效率和采摘精度,并实现模型的快速部署到移动端。通过将EfficientNet的主干网络替换YOLOv5s的Backbone层,并加入SPPF特征融合模块,以及在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,减少了模型的参数量和计算量,同时提高了模型识别金银花的精确度和平均精度。实验结果表明,改进后的轻量化模型在参数量、计算量和权重大小上均有显著降低,且精确度和平均精度有所提高。

国内外研究现状

国内研究现状

  1. 金银花采摘技术:国内对金银花的采摘主要依赖人工,存在效率低下的问题,机械化和智能化采摘技术正在逐步发展。
  2. 目标检测技术应用:国内研究者开始将基于图像处理和机器学习的目标检测方法应用于农业采摘领域,如基于色差信息的识别模型和基于HSV颜色模型的分割方法。
  3. 深度学习在农业中的应用:随着深度学习技术的发展,越来越多的研究开始关注于如何将深度学习算法应用于农业生产,特别是在农业机器人采摘领域。

国外研究现状

  1. 农业采摘机器人:国际上已有多种成熟的采摘机器人投入生产使用,逐步代替人类劳动力。
  2. 目标检测模型发展:国际上对目标检测模型的研究较为深入,如YOLO系列、Faster-RCNN等,这些模型在农业领域有着广泛的应用。
  3. 模型轻量化研究:国际上对模型轻量化的研究较为活跃,旨在减少模型的参数量、计算量和权重大小,以便于模型在移动端的部署。

研究目的

本研究旨在设计一种金银花采摘机器人,通过实现金银花的识别及模型轻量化,提高采摘效率和精度,减少人工采摘的工作量,并为采摘机器人的识别和移动端部署提供参考和依据。

研究问题

  1. 如何提高金银花采摘机器人的工作效率和采摘精度?
  2. 如何实现模型的轻量化,以便快速部署到移动端?
  3. 如何在减少模型复杂度的同时保持或提高模型的识别精度?

使用的研究方法

  1. 模型改进:将YOLOv5s模型的Backbone层替换为EfficientNet的主干网络,并加入SPPF特征融合模块。
  2. 特征融合:在改进后的Backbone层中加入原YOLOv5s的SPPF特征融合模块,增强特征的融合程度。
  3. 上采样改进:在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,提高模型识别金银花的精确度。
    在这里插入图片描述
    在这里插入图片描述

试验研究结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  1. 参数量和计算量降低:改进后的轻量化模型参数量为原始YOLOv5s模型的55.5%,计算量为原始模型的49.4%。
  2. 权重大小降低:改进后的模型权重大小为原始模型的57.4%。
  3. 识别精度提高:改进后的模型精确度和平均精度分别达到90.7%和91.8%,相比原始YOLOv5s模型分别提高了1.9和0.6个百分点。

文献结论

本文提出的基于改进YOLOv5s的轻量化金银花识别方法在减少模型参数量、计算量和权重大小的同时,提高了模型的识别精度,为金银花采摘机器人的设计和移动端部署提供了有效的技术支持。

创新点和对现有研究的贡献

  1. 模型轻量化:通过替换主干网络和上采样模块,实现了模型的轻量化,为模型在移动端的部署提供了可能。
  2. 特征融合技术:引入SPPF特征融合模块,增强了模型对不同特征层特征的识别能力。
  3. 上采样技术改进:采用CARAFE上采样模块,提高了模型对金银花的识别精度,尤其是在处理重叠和遮挡的金银花时。
  4. 实际应用价值:研究成果可直接应用于金银花采摘机器人的设计,提高采摘效率和精度,减少人工成本,对现代农业生产具有重要意义。

以下是一些针对您提到的论文主题的有效参考资料,这些资料可以帮助您更深入地了解相关领域的研究进展和技术细节:

1. 目标检测技术

  • Redmon, J., Divakaran, A., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 在CVPR会议上发表的这篇论文介绍了YOLO(You Only Look Once)算法,是目标检测领域的一个重要里程碑。

    • 链接
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. SSD算法的论文,提出了一种新的单次检测模型。

    • 链接

2. 深度学习与农业应用

  • Zhang, C., & Chen, Y. (2019). Deep Learning for Agricultural Robotics: A Survey. 这篇综述文章提供了深度学习在农业机器人领域应用的全面概述。

    • 链接
  • Li, S., Zhang, S., Xue, J., et al. (2022). Lightweight target detection for the field flat jujube based on improved YOLOv5. 这篇文章探讨了改进的YOLOv5在农业目标检测中的应用。

    • 链接

3. 模型轻量化

  • Tan, M., Chen, B., Pang, R., Vasudevan, V., & Le, Q. V. (2019). MnasNet: Platform-Aware Neural Architecture Search for Mobile. 这篇论文介绍了MnasNet,一种为移动和边缘设备设计的轻量级网络。

    • 链接
  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 这篇论文提出了MobileNet,这是另一个针对移动设备的轻量级网络架构。

    • 链接

4. 特征融合与上采样技术

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. 这篇论文介绍了空间金字塔池化技术,用于增强特征融合。

    • 链接
  • Wang, J., Chen, K., Xu, R., et al. (2019). CARAFE: Content-Aware ReAssembly of FEatures. 这篇论文提出了CARAFE上采样技术,用于提高图像超分辨率。

    • 链接

这些资料涵盖了目标检测、深度学习在农业中的应用、模型轻量化以及特征融合和上采样技术,为您进一步研究和学习提供了坚实的理论基础和实践指导。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/14234.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】ArrayList与LinkedList详解!!!——Java

目录 一🌞、List 1🍅.什么是List? 2🍅.List中的常用方法 二🌞、ArrayList 1🍍.什么是ArrayList? 2🍍.ArrayList的实例化 3🍍.ArrayList的使用 4🍍.ArrayList的遍…

modbus协议 Mthings模拟器使用

进制转换 HEX 16进制 (0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F表示0-15) dec 10进制 n(16进制) -> 10 abcd.efg(n) d*n^0 c*n^1 b*n^2 a*n^3 e*n^-1 f*n^-2 g*n^-3(10) 10 -> n(16进制) Modbus基础概念 高位为NUM_H&…

微信版产品目录如何制作?

微信作为我国最流行的社交媒体平台,拥有庞大的用户群体。许多企业都希望通过微信来推广自己的产品,提高品牌知名度。制作一份精美、实用的微信版产品目录,是企业微信营销的重要手段。微信版产品目录的制作方法,帮助您轻松入门。 ​…

消息推送之SSE

一、简介 市面上很多系统都有 以上三种的消息提醒。但大多分为2类,一类移动端,一类web端比,通常在服务端会有若干张消息推送表,用来记录用户触发不同事件所推送不同类型的消息,前端主动查询(拉&#x…

react中如何在一张图片上加一个灰色蒙层,并添加事件?

最终效果: 实现原理: 移动到图片上的时候,给img加一个伪类 !!此时就要地方要注意了,因为img标签是闭合的标签,无法直接添加 伪类(::after),所以 我是在img外…

微搭低代码入门03函数

目录 1 函数的定义与调用2 参数与返回值3 默认参数4 将功能拆分成小函数5 函数表达式6 箭头函数7 低代码中的函数总结 在用低代码开发软件的时候,除了我们上两节介绍的变量、条件语句外,还有一个重要的概念叫函数。函数是执行特定功能的代码片段&#xf…

Zabbix中文监控指标数据乱码

1)点击主机,选择Zabbix server 中的 图形 一项,可以看到当前显示的为乱码 2) 下载字体文件: https://gitcode.com/open-source-toolkit/4a3db/blob/main/SimHei.zip 解压unzip -x SimHei.zip 3) 替换字体文…

限价订单簿中的高频交易

数量技术宅团队在CSDN学院推出了量化投资系列课程 欢迎有兴趣系统学习量化投资的同学,点击下方链接报名: 量化投资速成营(入门课程) Python股票量化投资 Python期货量化投资 Python数字货币量化投资 C语言CTP期货交易系统开…

JDBC事务管理、四大特征(ACID)、事务提交与回滚、MySQL事务管理

目录 一、什么是JDBC事务? (1)事务概念。 (2)JDBC事务的实现。 1、提交。 2、回滚。 (3)生活中可以类比 JDBC 事务的例子。 1、以网上购物为例。 二、JDBC的四大事务(ACID&#xff0…

操作系统离散存储练习题

1. (简答题)分页存储管理系统具有快表,内存访问时间为2ns,检索快表时间为0.5ns,快表命中率为80%,求有效访问时间 -分析:首先访问缓存(快表),如果没有找到访问内存(页表&…

【AI日报】2024年11月13号

我回来啦!!发现自己好久不发文章了。 在某头部AI公众号实习的过程中,学到太多太多了,也感谢某位大神的指点,也衷心祝愿他的IP可以越做越好 之后因为时间关系,可能要自己出来单干了。 在实习过程中学到的…

inline内联函数(C++)

a)⽤inline修饰的函数叫做内联函数,编译时C编译器会在调⽤的地⽅展开内联函数,这样调⽤内联函数就不需要建⽴栈帧了,就可以提⾼效率。 b)inline对于编译器⽽⾔只是⼀个建议,也就是说,你加了inl…

C++builder中的人工智能(27):如何将 GPT-3 API 集成到 C++ 中

人工智能软件和硬件技术正在迅速发展。我们每天都能看到新的进步。其中一个巨大的飞跃是我们拥有更多基于自然语言处理(NLP)和深度学习(DL)机制的逻辑性更强的AI聊天应用。有许多AI工具可以用来开发由C、C、Delphi、Python等编程语…

Harmony- List组件最后一个item显示不全

在使用List组件显示数据的时候会出现最后一个item显示不全的问题,如下 出现在高度问题上,如果List组件上下没有其他占位组件就是正常显示的 解决方案: 1.给List组件加上layoutWeight(1),使它填满父控件剩余空间; 2.还有一种情况…

neo4j desktop基本入门

下载安装不在赘述,本文只记述一些neo4j的基本入门操作 连接本地neo4j数据库 1. 点击ADD添加连接 端口一般是7687 账户名和密码忘记了,可以通过neo4j web(默认为neo4jneo4j://localhost:7687/neo4j - Neo4j Browser)重置密码 AL…

function and task

任务和函数 在Verilog语言中提供了任务和函数,可以将较大的行为级设计划分为较小的代码段,允许设计者将需要在多个地方重复使用的相同代码提取出来,编写成任务和函数,这样可以使代码更加简洁和易懂。 1.1任务 任务的定义 任务定义…

24/11/13 算法笔记<强化学习> DQN算法

DQN算法的主要特点包括: 神经网络代替Q表:在传统的Q学习中,需要维护一个Q表来存储每个状态-动作对的Q值。而在DQN中,使用神经网络来近似这些Q值,这使得算法能够处理具有大量状态和动作的问题。 经验回放(E…

blind-watermark - 水印绑定

文章目录 一、关于 blind-watermark安装 二、bash 中使用三、Python 调用1、基本使用2、attacks on Watermarked Image3、embed images4、embed array of bits 四、并发五、相关 Project 一、关于 blind-watermark Blind watermark 基于 DWT-DCT-SVD. github : https://githu…

Qt_day10_程序打包(完结)

目录 1. 设置图标 2. Debug和Release版本 3. 动态链接库 4. 打包 5. 联系项目要求 Qt开发的程序最终都是要给用户使用的,用户的电脑上不可能装一个Qt的开发环境导入项目使用。因此项目项目开发完成后需要打包——制作成安装包,用户直接下载并安装即可使用…

【C语言】指针的运算

指针的增量操作: int i 10; int *p &i;printf("p %p\n", p);//1024p; // 增加int 4个字节大小printf("p %p\n", p);//1028指针的增量运算取决于指针的数据类型,它将会增加数据类型的大小的字节。 指针的减量操作与增量同理…