【JavaEE】多线程(三)

多线程(三)

续上文,多线程(二),我们已经讲了

  1. 创建线程
  2. Thread的一些重要的属性和方法

那么接下来,我们继续来体会了解多线程吧~


文章目录

  • 多线程(三)
    • 线程启动 start
      • start与run的区别
    • 中断线程 interrupt
      • 方法一
      • 方法二
    • 线程等待 join
    • 线程状态
    • 线程安全
      • 线程安全问题的原因
      • synchronized

线程启动 start

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其实在之前的两篇文章中我,我们就见识过线程启动,也就是t.start();,其实也就是start方法。

start方法内部,实际上是调用了系统api,在系统内核创建线程。

而我们随之见识的t.run(); 也就是run方法,它只是单纯的描述了该线程要执行什么内容,是会在start创建好线程之后自动被调用的~

start与run的区别

虽然我们看起来的效果是相似的,实际上本质上的区别就是在于是否是系统内部创建出的新的线程

中断线程 interrupt

所谓中断线程,也就是任一个线程停止运行(销毁),而在Java中,要销毁/终止进程,做法是比较唯一的,就是让run方法早点结束。(不过在C++中,他是有能力直接强行终止一个正在运行的进程的,好暴力的呢🥵🥵🥵🥵,不过就会导致线程活干一半,环境会残留一些数据~)

所以我们还是就Java来看(Java生态多好~)

方法一

可以在代码中手动创建出标志位,来作为run方法执行结束的循环

很多线程,执行时间久,往往就是因为写了一个循环,循环要持续执行,所以要想让run执行结束,就是让循环尽快退出~

见以下代码:

public class Demo8 {private static boolean isQuit = false;public static void main(String[] args) throws InterruptedException {Thread t = new Thread(() ->{while (!isQuit){//此处的打印可以替换成任意的逻辑来表示线程的实际工作内容System.out.println("线程工作中");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println("线程工作完毕");});t.start();Thread.sleep(5000);isQuit = true;System.out.println("已过5s 设置 isQuit 为 true");}
}

这里我们是设了一个成员变量isQuit来作为标志位~

这里我们抛出一个疑问,要是我们将isQuit改成main方法内的局部变量,此时的程序是否还能完成中断操作?

public class Demo8_change {//private static boolean isQuit = false;public static void main(String[] args) throws InterruptedException {boolean isQuit = false;Thread t = new Thread(() ->{while (!isQuit){//此处的打印可以替换成任意的逻辑来表示线程的实际工作内容System.out.println("线程工作中");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println("线程工作完毕");});t.start();Thread.sleep(5000);isQuit = true;//常量变了System.out.println("已过 5s 设置 isQuit 为 true");}
}

哈哈,程序报错了

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

为什么呢?

这其实就是线程和主线程在读取和写入isQuit变量时没有使用同步机制,这也涉及到了lambda表达式中的一个语法规则,变量捕获

lambda表达式里面的代码,是可以自动捕获到上层作用域涉及到的局部变量的,也就是我们上面代码中的isQuit。所谓的变量捕获,就是让lambda表达式把当前作用域中的变量在lambda内部复制了一份(此时外部是否销毁,无所谓)

而且在Java中,变量捕获语法,还有一个前提:就是必须只能捕获一个final或者实际上是final的值。

boolean isQuit = false;虽然没有使用final,但是却没有实际修改内容,他就是实际上的final~

下面举个例子再了解了解:

public class VariableCaptureExample {public static void main(String[] args) {int num = 10; // 外部作用域的局部变量// 使用Lambda表达式引用外部作用域的变量Runnable r1 = () -> {System.out.println(num); // 引用外部作用域的变量};r1.run(); // 输出结果为:10// 使用内部类引用外部作用域的变量Runnable r2 = new Runnable() {@Overridepublic void run() {System.out.println(num); // 引用外部作用域的变量}};r2.run(); // 输出结果为:10}
}

在上述示例中,Lambda表达式和内部类都引用了外部作用域中的变量num。当Lambda表达式或内部类被创建时,变量num会被捕获并保存在生成的对象中,以供后续使用。

需要注意的是,被捕获的局部变量应当是有效的(final或事实上的final)。如果在Lambda表达式或内部类中尝试修改被捕获的变量,将会导致编译错误。例如,在上述示例中,如果尝试修改num的值,编译器就会报错。这是因为被捕获的局部变量应当保持不可变,以确保代码的一致性。


当然,此处Java的设定,并不够科学。这里的final的限制,很多时候是个比较麻烦的事情,相比之下,JS这里的设定更合适一些.lambda(不只是lambda)都是可以捕获外部的变量(JS天然就有一个作用域链),可以保证捕获的变量是同一个变量,并且会自动的调整变量的生命周期.


方法二

调用 interrupt() 方法来通知

不过要中断进程,方法一显然不太优雅~因为它:

  1. 需要手动创建变量
  2. 当线程内部在sleep的时候,主线程修改变量,新线程内部不能及时响应

见以下例子

// 线程终止 - 优雅的方式
public class Demo9 {public static void main(String[] args) {Thread t = new Thread(()->{//Thread 类内部,有一个现成的标志位,可以用来判定当前的循环是否要结束while (!Thread.currentThread().isInterrupted()){System.out.println("线程工作中");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();          }}});t.start();try {Thread.sleep(5000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("让 t 线程终止");t.interrupt();}
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

t.interrupt();这个操作,就是将上述代码的Thread对象内部的标志位设置为true

同时即使线程内部出现阻塞sleep,也是可以用这个方法唤醒的~

正常来说,sleep会休眠到时间到,才能唤醒,此处给出的interrupt就可以使sleep内部触发一个异常,从而提前被唤醒

而方法一中我们自己手动定义标志位,无法实现这个效果的~

我们看看上述代码的运行效果

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

oh,my god~异常确实是报出来了,但是上述的线程t依然在运行,它并没有真的结束。

实际上,这是因为interrupt唤醒线程之后,同时会清除刚才设置的标志位,这样就会导致我们刚才“设置标志位”这样的效果好像没生效一样~


正式一点来说就是:因为线程在执行Thread.sleep()方法时,会抛出InterruptedException异常。当t线程抛出该异常时,catch块中的代码会被执行,并且线程的中断状态会被重置为false。因此,尽管主线程调用了t.interrupt()方法,但此时线程的中断状态为false,所以t线程可以继续正常运行。

实际上这样的设定也是有它的道理所在:

这样的设计是为了给线程处理中断的机会,通过捕获InterruptedException异常,线程可以在收到中断信号时进行必要的清理工作,并使用自定义逻辑来决定是否立即停止线程。

也就是让我们有更多的操作空间,而可操作空间的前提就是通过“异常”方式唤醒的。

因此如果希望t线程在收到中断信号后立即终止,我们可以在catch块中使用break;语句来跳出循环,以实现快速结束线程。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

线程等待 join

让一个线程等待,等待另一个线程执行结束,再继续执行,本质上就是控制线程结束的顺序~

join就是实现线程等待的效果,在主线程中调用t.join();此时就是主线程等待t线程先结束。

join的工作过程:

  1. 如果t线程正在运行中,此时调用join的线程就会阻塞,一直阻塞到t线程执行结束为止
  2. 如果t线程已经执行结束了,此时调用join线程,就直接返回,不会涉及到阻塞~
public class Demo10 {public static void main(String[] args) throws InterruptedException {Thread t = new Thread(()->{for (int i = 0; i < 5; i++) {System.out.println(" t 线程工作中");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}});t.start();//让主线程来等待 t 线程执行结束//一旦调用 join,主线程就会触发阻塞, 此时 t 线程就会趁机完成后续的工作//一旦阻塞到 t 执行完毕了,join才会解除阻塞,继续执行System.out.println("join 开始等待");t.join(1000);//最好是有时间等待,不要死等System.out.println("join 等待结束");}
}
/*
join 开始等待t 线程工作中t 线程工作中
join 等待结束t 线程工作中t 线程工作中t 线程工作中
/*

这里举个例子:
有一天我约女神出来,19:00在学校门口碰头~~

  1. 如果我先到了,发现女神还没来,就要阻塞等待,等到女神来了之后,我俩就可以一起去🥵🥵🥵🥵了.

  2. 女神先到了.当我来到校门口的时候,虽然时间还不到19:00,但是我看到女神已经在了.此时我俩直接出发去🥵🥵🥵🥵就可以了.就不需要等待

  3. 我来了之后,等了很久,女神还没出现,我仍然继续等.…join默认是"死等",“不死不休”)

一般来说,等待操作都是带有一个"超时时间”

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

sleep有一定的调度开销

//证明sleep(1000)实际上并不精确public class Demo11 {public static void main(String[] args) throws InterruptedException {/*System.out.println("开始: " + System.currentTimeMillis());Thread.sleep(1000);System.out.println("结束: " + System.currentTimeMillis());*/long beg = System.currentTimeMillis();Thread.sleep(1000);long end = System.currentTimeMillis();System.out.println("时间:" + (end - beg) + "ms");}
}
//时间:1009ms

系统会按照1000ms这个时间来控制让线程休眠

但是当1000ms时间到了之后,系统会唤醒这个线程(阻塞 -> 就绪)

但是不是说这个线程就成了就绪状态,就能够立即回到cpu上运行,(因为这中间会有一个“调度”的开销)

对于windowsLinux这些系统来说,调度开销是很大的,可能会达到ms级别


线程状态

进程的状态,最核心的,一个是就绪状态,阻塞状态.(对于线程同样适用)
以线程为单位进行调度的.

在Java中,又给线程赋予了一些其他的状态

  • NEW:安排了工作,还未开始行动,Thread对象有了,start方法还没调用
  • TERMINATED:工作完成了,Thread对象还在,内核中的进程已经没了
  • RUNNABLE:可工作的.又可以分成正在工作中和即将开始工作,就绪状态(线程已经在cpu上执行了/线程正在排队等待上cpu执行)
  • TIMED_WAITING:这几个都表示排队等着其他事情,阻塞,由于sleep这种固定时间的方式产生的阻塞
  • WAITING:这几个都表示排队等着其他事情,由于wait这种不固定时间的方式产生的阻塞
  • BLOCKED:这几个都表示排队等着其他事情,由于所竞争导致的阻塞
public class Demo12 {public static void main(String[] args) throws InterruptedException {Thread t = new Thread(()->{while (true){try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}});// 在调用 start 之前获取状态, 此时就是 NEW 状态System.out.println(t.getState());t.start();for (int i = 0; i < 5; i++) {System.out.println(t.getState());Thread.sleep(1000);}t.join();// 在线程执行之后,获取线程的状态,此时是 TERMINATED 状态System.out.println(t.getState());}
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

线程安全

所谓的线程安全,就是说有些代码在单个线程环境中执行,是完全正确的,但是如果是相同的代码,让其在多个线程的环境中去同时执行,此时就会出现bug,这也就是线程安全问题~

下面给出示例代码:

public class Demo14 {//此处定义一个 int 类型的变量private static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(()->{// 对 count 变量进行自增 5w 次for (int i = 0; i < 50000; i++) {count++;}});Thread t2 = new Thread(()->{// 对 count 变量进行自增 5w 次for (int i = 0; i < 50000; i++) {count++;}});t1.start();t2.start();// 如果没有这两 join ,肯定是不行的,线程还没自增完,就开始打印了,很可能打印出来的 count 就是个 0t1.join();t2.join();//预期结果应该是 10wSystem.out.println("count: " + count);}
}
//count: 52947

以上的代码就是非常典型的线程安全问题~

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以在解决这个bug'前,我们要知道count++的本质~

count++的本质上是分三步操作的,站在cpu的角度上,count++是由cpu通过三个指令来实现的:

  1. load:把数据从内存读取到cpu寄存器中
  2. add:把寄存器中的数据进行+1
  3. save:把寄存器中的数据,保存到内存中

如果是多个线程执行上述代码,由于线程之间的调度顺序,是"随机”的,就会导致在有些调度顺序下,上述的逻辑就会出现问题.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结合上述讨论,就意识到了,在多线程程序中,最困难的一点:
线程的随机调度,使两个线程执行逻辑的先后顺序,存在诸多可能.
我们必须要保证在所有可能的情况下,代码都是正确的!!

在解决这个问题之前,我们得知道产生线程安全问题的原因是什么:

线程安全问题的原因

  1. 操作系统中,线程的调度顺序是随机的(抢占性执行),这也就是万恶之源

  2. 两个线程,针对同一个变量进行修改(有些情况我们是可以通过修改代码结构来规避上述问题,但是也有很多情况是调整不了的)

  3. 修改操作,不是原子的

    此处给的count++就属于是非原子操作(先读,再修改)

    类似的,如果在一段逻辑中,需要根据一定的条件来决定是否修改,也是存在类似问题

    (假设count++是原子的,也就是说有一个cpu指令可以一次完成上述的count++三步操作)

  4. 内存可见性问题

  5. 指令重排序问题


那么知道了原因,我们就有相对应的解决方法了~

我们的思路就是:

  • 通过修改代码结构来规避上述问题,虽然也有很多情况是调整不了的
  • 想办法让count++的三步走变成原子性的

那么这里我们就选择:加锁!!!!!!!!!

最常用的方法就是synchronized关键字

synchronized

synchronized是Java中的关键字,用于实现线程的同步。它可以应用于方法或代码块上。

所以synchronized在使用的时候,我们需要搭配一个代码块{}

这样子进入{就会加锁,出}就会解锁

在已经加锁的状态中,另一个线程尝试同样加这个锁,就会产生“锁冲突/锁竞争”,后一个线程就会阻塞等待,一直等到前一个线程解锁为止~

所以这里我们给出修改后的代码:

public class Demo13 {
//此处定义一个 int 类型的变量private static int count = 0;public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(()->{// 对 count 变量进行自增 5w 次for (int i = 0; i < 50000; i++) {synchronized (locker){count++;}}});Thread t2 = new Thread(()->{// 对 count 变量进行自增 5w 次for (int i = 0; i < 50000; i++) {synchronized (locker){count++;}}});//        t1.start();
//        t2.start();// 如果没有这两 join ,肯定是不行的,线程还没自增完,就开始打印了,很可能打印出来的 count 就是个 0
//        t1.join();
//        t2.join();//改进:>t1.start();t1.join();t2.start();t2.join();System.out.println("count: " + count);//100000
//在原来的代码中,t1.start()和t2.start()的顺序是固定的,不论t1和t2线程的逻辑如何,主线程会立即启动两个新线程,然后等待它们执行完毕。这种方式适用于两个线程之间没有依赖关系的情况。
//因此,改变t1.start()和t2.start()的调用顺序以及使用join()方法,可以控制线程的执行顺序和依赖关系,满足具体的业务需求。}
}
//count: 100000

在这里插入图片描述

如果两个线程是在针对同一个对象加锁,就会有锁竞争
如果不是针对同一个对象加锁,就不会有锁竞争,仍然是并发执行!

我们举个例子:

把锁当作一个小妹妹,你去表白,成功了,妹子到手了,也相当于你给妹子加锁了,这时候别的男的他想要你的小妞,他就得阻塞等待,等你们分手了,他才能接盘(排除妹子绿你的情况哈~)

但是那个男的去追别的女生,就不会受你的影响(除非你这人遍地撒花~)

如图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传


至此,多线程(三)暂时讲到这里,这里暂时synchronized开了个头,接下来会继续更新,敬请期待~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/142264.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Git学习笔记4

GitHub是目前最火的开源项目代码托管平台。它是基于web的Git仓库&#xff0c;提供公有仓库和私有仓库&#xff0c;但私有仓库是需要付费的。 到Github上找类似的项目软件。 GitLab可以创建免费的私有仓库。 GitLab是利用 Ruby开发的一个开源的版本管理系统&#xff0c;实现一个…

【搭建私人图床】使用LightPicture开源搭建图片管理系统并远程访问

文章目录 1.前言2. Lightpicture网站搭建2.1. Lightpicture下载和安装2.2. Lightpicture网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 现在的手机越来越先进&#xff0c;功能也越来越多&#xff0c;而手机…

基于STM32+华为云IOT设计的智能车库管理系统

一、项目介绍 随着城市化进程和汽车拥有率的不断提高&#xff0c;停车难的问题也日益凸显。在城市中&#xff0c;停车场是一个非常重要的基础设施&#xff0c;但是传统的停车场管理方式存在很多问题&#xff0c;比如车位难以管理、停车费用不透明等。为了解决这些问题&#xf…

时间轮算法

思考 假如现在有个任务需要3s后执行&#xff0c;你会如何实现&#xff1f; 线程实现&#xff1a;让线程休眠3s 如果存在大量任务时&#xff0c;每个任务都需要一个单独的线程&#xff0c;那这个方案的消耗是极其巨大的&#xff0c;那么如何实现高效的调度呢&#xff1f; 时…

goadmin 学习笔记

1.安装命令行 Following three steps to run it. Note: now you can quickly start by doing like this. $ go install github.com/GoAdminGroup/admlatest $ mkdir new_project && cd new_project $ adm init Or (use adm whose version higher or equal than v1.…

2023年信创云管平台选哪家?咨询电话多少?

随着云计算和信创国产化的快速发展&#xff0c;越来越多企业需要支持信创系统的云管平台。但很多企业不知道市面上信创云管平台有哪些&#xff0c;也不知道选哪家&#xff1f;这里我们小编就给大家来回答一下。 2023年信创云管平台选哪家&#xff1f;咨询电话多少&#xff1f;…

剪映软件专业版的操作与使用,电脑版与手机版APP同步讲解

一、教程描述 什么是剪映&#xff1f;抖音官方推出的一款视频编辑工具&#xff0c;用于短视频的剪辑制作和在线发布&#xff0c;主要在手机端使用&#xff0c;同时支持PC端&#xff0c;操作简单易上手&#xff0c;功能也十分强大&#xff0c;使用过剪映的用户&#xff0c;都将…

基于量子粒子群算法(QPSO)优化LSTM的风电、负荷等时间序列预测算法(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

华硕 ASUS U303L 换国产致钛SSD固态硬盘记

ASUS U303L尽享丝滑体验——换装国产致钛SC001 1T SSD 华硕笔记本电脑款式年代久远&#xff0c;东芝的机械硬盘&#xff0c;没有安装SSD的笔记本电脑用久了&#xff0c;卡顿是难免的事情。更换国产致钛固态硬盘后&#xff0c;体验丝一般的感觉&#xff0c;非常成功&#xff01…

nginx: 部署前端项目的详细步骤(vue项目build打包+nginx部署)

目录 第一章 前言 第二章 准备工作 2.1 项目打包理解 2.1.1 打包命令 2.1.2 理解npm run serve/dev 和 npm run build命令 2.2 nginx参数配置理解 2.2.1 nginx常用基本命令 2.2.2 默认配置 2.2.3 搭建不同网站的站点 2.2.4 禁止访问的目录以及一键申请SSL证书验证目录…

【JDK 8-函数式编程】4.4 Supplier

一、Supplier 接口 二、实战 Stage 1: 创建 Student 类 Stage 2: 创建方法 Stage 3: 调用方法 Stage 4: 执行结果 一、Supplier 接口 供给型 接口: 无入参&#xff0c;有返回值&#xff08;T : 出参类型&#xff09; 调用方法: T get(); 用途: 如 无参的工厂方法&#x…

【js逆向实战】某讯漫画网站图片逆向

写在前面 本来想更安全开发系列&#xff0c;想着复现一下长亭的rad。里面涉及到好多js逆向的知识&#xff0c;正好学习了一波&#xff0c;本身js逆向也是一个大坑&#xff0c;说不定也能完善好多以前的爬虫项目。 学了也有一段时间了&#xff0c;来练练手吧 涉及到具体的隐私…

service

title: “Service” createTime: 2022-02-11T11:23:2008:00 updateTime: 2022-02-11T11:23:2008:00 draft: false author: “name” tags: [“service”] categories: [“linux”] description: “测试的” linux的Service之旅 1.service 服务权限 systemd有系统和用户区分&…

2023年9月26日,历史上的今天大事件早读

1620年9月26日大明皇帝朱常洛驾崩 1815年9月26日俄、普、奥三国在巴黎发表缔结“神圣同盟” 1841年9月26日清代思想家、诗人龚自珍逝世 1849年9月26日“生理学之父”巴甫洛夫诞生 1909年9月26日云南陆军讲武堂创办 1953年9月26日画家徐悲鸿逝世 1980年9月26日国际宇航联合…

【C++】构造函数和析构函数第一部分(构造函数和析构函数的作用)--- 2023.9.25

目录 前言初始化和清理的概念构造函数和析构函数的作用构造函数的作用析构函数的作用 使用构造函数和析构函数的注意事项默认的构造函数和析构函数结束语 前言 在使用c语言开发的项目场景中&#xff0c;我们往往会遇到申请空间的需求&#xff0c;同时也肯定遇到过程序运行一段…

phpstudy2016 RCE漏洞验证

文章目录 漏洞描述漏洞验证 漏洞描述 PHPStudyRCE&#xff08;Remote Code Execution&#xff09;&#xff0c;也称为phpstudy_backdoor漏洞&#xff0c;是指PHPStudy软件中存在的一个远程代码执行漏洞。 漏洞验证 打开phpstudy2016&#xff0c;用bp自带的浏览器访问www目录下…

【Verilog 教程】4.8Verilog 过程连续赋值

关键词&#xff1a;deassign&#xff0c;force&#xff0c;release 过程连续赋值是过程赋值的一种。这种赋值语句能够替换其他所有 wire 或 reg 的赋值&#xff0c;改写了 wire 或 reg 型变量的当前值。 与过程赋值不同的是&#xff0c;过程连续赋值的表达式能被连续的驱动到 …

大数据Flink(八十六):DML:Group 聚合和Over 聚合

文章目录 DML:Group 聚合和Over 聚合 一、DML:Group 聚合

Spring面试题23:Spring支持哪些事务管理类型?Spring框架的事务管理有哪些优点?你更倾向用哪种事务管理类型?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:Spring支持哪些事务管理类型? Spring 支持以下几种事务管理类型: 编程式事务管理:通过在代码中显式地使用事务管理 API(如 TransactionTempla…

Python+Django前后端分离

程序示例精选 PythonDjango前后端分离 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonDjango前后端分离》编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;易读。 学习与应…