10.Java对象内置结构

文章目录

  • Java对象内置结构
    • 1.Java对象的三个部分
      • 1.1.对象头
      • 1.2.对象体
      • 1.3.对齐字节
    • 2.对象结构中核心字段的作用
      • 2.1.MarkWord(标记字)
      • 2.2.Class Pointer(类对象指针)
      • 2.3.Array Length(数组长度)
      • 2.4.对象体
      • 2.5.对齐字节
    • 3.Mark Word的结构信息
      • 3.1.不同锁状态下的Mark Word字段结构
      • 3.2.Mark Word的构成
    • 4.使用JOL工具查看对象的布局
      • 4.1.引入依赖
      • 4.2.编写对象布局分析的测试代码
      • 4.3.输出结果解读
      • 4.4.大小端问题
    • 5.Java中的内置锁
      • 5.1.无锁状态
      • 5.2.偏向锁状态
      • 5.3.轻量级锁状态
      • 5.4.重量级锁状态

Java对象内置结构

Java对象很多重要信息都存放在对象结构中,在学习Java内置锁之前,先来了解一下Java对象结构

1.Java对象的三个部分

1.1.对象头

对象头一共包括三个字段【Mark Word】【Class Pointer】【 Array Length】

  • MarkWord(标记字),用于存储自身运行时的一些数据,例如GC标志位,哈希码,锁状态等信息。
  • Class Pointer(类对象指针),用于存放此对象的元数据(InstanceKlass)的地址,虚拟机可以通过此指针确当这个对象是那个类的实例
  • Array Length(数组长度),如果对象是一个Java数组,那么此字段必须有,用于记录数组长度的数据,如果不是数组,那么此字段不存在

1.2.对象体

对象体包含了,对象的实例变量(成员变量),用于成员属性值,包括父类的成员属性值,这部分内存按照4字节对齐

1.3.对齐字节

对齐字节(Alignment Byte)是为了优化内存访问效率而在Java中自动添加的额外字节。它确保对象和数组字段的对齐,提高内存访问的效率和性能。开发人员无需手动处理对齐字节,由Java虚拟机自动处理。

其中,对齐字节也称为填充对齐,作用就是用来保证Java对象在所占用内存字节数为8的倍数(8N Bytes),HotSopt VM内存管理要求,对象的起始地址必须是8字节的整数倍

在这里插入图片描述

2.对象结构中核心字段的作用

下面我们来对Object实例结构中的几个重要字段作一些简单说明

2.1.MarkWord(标记字)

在Java对象头部的一部分内存空间用于存储对象的元数据和状态信息,被称为MarkWord。MarkWord包含了对象的哈希码、锁信息、GC标记等信息。它的具体结构和内容在不同的JVM实现中可能会有所差异。

2.2.Class Pointer(类对象指针)

在Java对象头部的另一部分内存空间用于存储指向该对象所属类的指针,被称为Class Pointer。这个指针指向对象的类的元数据,包括类的方法、字段等信息。通过Class Pointer,可以在运行时获取对象所属的类,并进行相应的操作。

2.3.Array Length(数组长度)

对于数组对象,Java对象头部的一部分内存空间用于存储数组的长度信息。这个长度信息在创建数组时被初始化,之后无法被修改。

2.4.对象体

象体是Java对象的实际数据部分,包含了对象的字段值。对象体的大小取决于对象中定义的字段及其类型。对象体紧跟在对象头部之后,占据连续的内存空间。

2.5.对齐字节

在Java对象的内存布局中,为了对齐数据而添加的额外字节被称为对齐字节。对齐字节的存在是为了提高内存访问的效率和性能。它确保对象和数组字段的对齐,使得数据能够被高效地加载到寄存器或缓存中。

3.Mark Word的结构信息

Java内置锁涉及了很多的重要信息,这些都存放在对象结构中,放放于对象头的MarkWord字段中,MarkWord长度为JVM的一个Word大小,也就说32位JVM MakrWord 为32位 ,64位的Mark Word为64位,MarkWord的位长度并不会受到OOP对象指针压缩的影响。

Java内置锁的状态一共分为4种【无锁】->【偏向锁】->【轻量级锁】->【重量级锁】,四种锁的状态会随着竞争的情况逐渐升级,而且过程是不可逆的(不可降级),锁只会升级,不会降级

3.1.不同锁状态下的Mark Word字段结构

Mark Word 字段的结构和Java内置锁的结构 强相关,为了让Mark Word字段存储更多的信息,JVM将Mark Word的最低两个位置设置为Java内置锁状态

下面通过图来了解一下Mark Word 结构

在这里插入图片描述

3.2.Mark Word的构成

目前主流的JVM都是64位,使用64位的Mark Word 下面对64位的Mark Word的各部分进行简单介绍下

  1. **lock(锁状态):**lock字段用于表示对象的锁状态。它包含了对象的锁信息,可以标识对象是否被锁定,以及锁的类型(如无锁、偏向锁、轻量级锁、重量级锁等)。锁状态的具体取值和意义在不同的JVM实现中可能会有所差异。
  2. biased_lock(偏向锁标记):biased_lock字段用于表示对象是否启用了偏向锁。偏向锁是一种针对无竞争的情况下优化的锁机制,用于提高单线程访问同步块的性能。当对象启用偏向锁时,biased_lock字段的值为1,表示该对象已经偏向于某个线程,不需要进行锁的竞争。
  3. **age(对象年龄):**age字段用于表示对象的年龄。在垃圾回收的过程中,JVM会根据对象的年龄来决定是否将对象晋升为老年代。对象的年龄通过age字段进行记录,当对象经过一次Minor GC(年轻代垃圾回收)而没有被回收时,其年龄会增加。
  4. **identity_hashcode(标识哈希码):**identity_hashcode字段用于存储对象的标识哈希码。标识哈希码是对象的一个唯一标识,与对象的内容无关。它在需要比较对象的引用是否相等时起到重要的作用。
  5. **thread(持有锁的线程):**thread字段用于记录当前持有锁的线程。在多线程环境下,当一个线程获得对象的锁时,该字段会记录该线程的引用,以便在锁的释放或竞争时进行相应的操作。
  6. **epoch(锁记录的版本号):**epoch字段用于记录锁记录的版本号。它在偏向锁撤销和轻量级锁升级为重量级锁时起到重要作用。当锁状态发生变化时,会更新epoch字段的值,以确保锁记录的有效性。
  7. **ptr_to_lock_record(指向锁记录的指针):**ptr_to_lock_record字段用于指向对象的锁记录。锁记录是在竞争过程中创建的数据结构,用于记录锁的状态和竞争情况等信息。
  8. **ptr_to_heavyweight_monitor(指向重量级监视器的指针):**ptr_to_heavyweight_monitor字段用于指向重量级监视器的指针。当对象的锁升级为重量级锁时,会创建一个重量级监视器来管理锁的竞争。

这些字段在MarkWord中扮演着重要的角色,用于管理对象的锁状态、偏向锁、年龄、哈希码等信息。它们的具体含义和使用方式在不同的JVM实现中可能会有所不同,但它们都对对象的同步和垃圾回收起到了重要的作用。

4.使用JOL工具查看对象的布局

如何在Java程序中查看Object对象头的结构呢?我们可以使用OpenJDK提供的JOL工具

JOL是分析JVM中对象的结构布局的工具,该用具大量使用了Unsafe ,JVMTI来解码内部布局情况,分析结果还是比较准确的。

4.1.引入依赖

<!-- https://mvnrepository.com/artifact/org.openjdk.jol/jol-core -->
<dependency><groupId>org.openjdk.jol</groupId><artifactId>jol-core</artifactId><version>0.10</version>
</dependency>

4.2.编写对象布局分析的测试代码

public class JOLTest {private static final Logger log = LoggerFactory.getLogger(JOLTest.class);@Test@DisplayName("测试JOL的使用")public void testJOL() {// 创建一个示例对象Student student = new Student();student.name = "喜羊羊";// 打印JVM信息log.error("JVM详细信息: {}", VM.current().details());// 打印对象布局信息log.error("对象布局:");log.error(ClassLayout.parseInstance(student).toPrintable());}}
class Student{public String name;
}

运行结果
在这里插入图片描述

4.3.输出结果解读

常见的Java数据类型及其在内存中所占用的字节数

数据类型字节数范围备注
boolean1true 或 false布尔类型只占用一个字节,但实际取值范围为 true 或 false。
byte1-128 到 127有符号的8位整数类型。
short2-32,768 到 32,767有符号的16位整数类型。
char20 到 65,535无符号的16位Unicode字符类型。
int4-2,147,483,648 到 2,147,483,647有符号的32位整数类型。
float4IEEE 754 单精度浮点数(有效位数约为 6-7 位)单精度浮点数类型,用于表示小数。
long8-9,223,372,036,854,775,808 到 9,223,372,036,854,775,807有符号的64位整数类型。
double8IEEE 754 双精度浮点数(有效位数约为 15 位)双精度浮点数类型,用于表示小数。
reference4 / 8对象引用,取决于操作系统位数(32位操作系统为 4 字节,64位操作系统为 8 字节)表示对Java对象的引用,指向对象在堆中的内存地址。
对象头部(Object Header)12对象的元数据和状态信息对象头部包含标记字段、哈希码、锁信息等,具体结构和大小可能会因Java虚拟机实现的不同而有所差异。

需要注意的是,数据类型的字节数可能会因特定的编译器、操作系统和硬件架构而有所不同。引用类型的大小取决于操作系统的位数,32位操作系统上为4字节,64位操作系统上为8字节。对象头部(Object Header)的大小也可能因不同的Java虚拟机实现而有所不同。

通过结果我们可以得到

  1. 对象头部(object header)占据了前12个字节(0-11字节)的空间:
    • 第一个字段(偏移量0):值为 01 00 00 00,十六进制形式对应的二进制为 00000001 00000000 00000000 00000000。这是对象的标记字段,表示对象的状态和锁信息。
    • 第二个字段(偏移量4):值为 00 00 00 00,十六进制形式对应的二进制为 00000000 00000000 00000000 00000000。这个字段也是对象头部的一部分,具体含义可能是保留字段或其他元数据。
    • 第三个字段(偏移量8):值为 80 77 13 01,十六进制形式对应的二进制为 10000000 01110111 00010011 00000001。这个字段是对象头部的一部分,可能是用来存储对象的哈希码或其他标识信息。
  2. com.hrfan.java_se_base.base.thread.jol.Student对象的实例大小为16字节。
  3. com.hrfan.java_se_base.base.thread.jol.Student对象的字段中,只有一个字段是java.lang.String类型的,即Student对象的name字段。该字段位于偏移量为12的位置,占据了4个字节的空间。
  4. 对象的空间损失为0字节,既没有内部损失也没有外部损失。

4.4.大小端问题

有关字节序列存放格式,目前有两大主流阵营,一个阵营是PowerPC系列的CPU,采用大端模式进行存放数据,第二大阵营是X86系列的CPU采用小端模式存放数据

大小端(Endianness)是指在多字节数据类型存储时,字节的存放顺序。在计算机中,多字节数据类型(如整数、浮点数等)通常由多个字节组成,而字节本身是按照一定的顺序进行存储的。具体来说,大小端指的是最低有效字节(即最右边的字节)和最高有效字节(即最左边的字节)的存放顺序。

在大端字节序(Big Endian)中,最高有效字节存储在最低的地址,而最低有效字节存储在最高的地址。这意味着在多字节数据类型中,字节的存放顺序与它们的值相对应。例如,对于16位整数值0x1234,它的最高有效字节是0x12,最低有效字节是0x34,在大端字节序中,它们将按照如下顺序存储:0x12(高地址)和0x34(低地址)。

在小端字节序(Little Endian)中,最低有效字节存储在最低的地址,而最高有效字节存储在最高的地址。这意味着在多字节数据类型中,字节的存放顺序与它们的值相反。以同样的例子,对于16位整数值0x1234,在小端字节序中,它们将按照如下顺序存储:0x34(低地址)和0x12(高地址)

内存地址大端字节序大端字节序(二进制)小端字节序小端字节序(二进制)
0x10000x120001 00100x340011 0100
0x10010x340011 01000x120001 0010

在大端字节序中,高位字节(0x12)存储在低地址(0x1000),低位字节(0x34)存储在高地址(0x1001)。二进制表示为0001 0010(高位字节)和0011 0100(低位字节)。

在小端字节序中,低位字节(0x34)存储在低地址(0x1000),高位字节(0x12)存储在高地址(0x1001)。二进制表示为0011 0100(低位字节)和0001 0010(高位字节)。

5.Java中的内置锁

在JDK1.6之前,所有的锁都是重量级锁,重量级锁会造成CPU在用户态和核心态之间频繁切换,所以代价高效率地下。所以在JDK1.6以后,引入【偏向锁】,【轻量级锁】的实现。

当涉及到多线程并发访问共享资源时,Java中的锁状态会根据不同的情况进行动态调整。

5.1.无锁状态

无锁状态表示对象没有被任何线程锁定,多个线程可以同时访问该对象而不会发生互斥或同步等操作。这种情况通常在没有竞争的情况下发生。例如,以下代码片段展示了一个无锁状态的示例:

int counter = 0;// 线程1
counter++;// 线程2
counter++;

在这个示例中,两个线程可以同时对counter变量进行递增操作,因为没有竞争发生。

5.2.偏向锁状态

偏向锁状态是一种针对无竞争情况下的优化。当一个线程获取了一个对象的锁,并且在之后连续多次访问该对象时,JVM会将该对象升级为偏向锁状态。偏向锁的目的是为了提高无竞争情况下的性能。以下是一个偏向锁状态的示例:

class Counter {private int count = 0;
}public class Test  m                                     {public static void main(String[] args) {Counter counter = new Counter();// 线程1获取锁并连续多次访问synchronized (counter) {counter.count++;counter.count++;// ...}// 线程2再次获取锁并访问synchronized (counter) {counter.count++;// ...}}
}

在这个示例中,线程1获取了counter对象的锁,并连续多次访问了count字段。由于没有其他线程竞争该锁,counter对象会被升级为偏向锁状态,线程2再次获取锁时会直接进入偏向锁状态,从而避免了同步操作。

5.3.轻量级锁状态

轻量级锁状态适用于多个线程竞争同一个对象的锁的情况。在轻量级锁状态下,锁的获取和释放使用CAS操作来实现,避免了传统的互斥量机制,从而提高了性能。以下是一个轻量级锁状态的示例:

class Counter {private int count = 0;
}public class Test {public static void main(String[] args) {Counter counter = new Counter();// 线程1获取锁synchronized (counter) {// ...}// 线程2尝试获取锁synchronized (counter) {// ...}}
}

在这个示例中,线程1获取了counter对象的锁,此时counter对象处于轻量级锁状态。当线程2尝试获取锁时,它会使用CAS操作进行自旋尝试获取锁,如果竞争不激烈,线程2可以快速获取到锁,避免了进入重量级锁状态。

5.4.重量级锁状态

重量级锁状态适用于竞争激烈的情况,它使用操作系统的互斥量机制来进行锁的获取和释放。重量级锁确保了线程的互斥访问,但在竞争激烈的情况下可能导致线程的频繁切换和性能下降。以下是一个重量级锁状态的示例:

class Counter {private int count = 0;
}public class Test {public static void main(String[] args) {Counter counter = new Counter();while(true){// 线程1获取锁synchronized (counter) {// ...}// 线程2获取锁synchronized (counter) {// ...}// 特定条件下退出循环// .......}}
}

在这个示例中,线程1和线程2同时竞争获取counter对象的锁。由于竞争激烈,JVM会将counter对象升级为重量级锁状态,这时锁的获取和释放会涉及到操作系统的互斥量机制。

注意,具体的锁状态转换和升级过程由JVM自动管理,开发者在编写代码时无需显式处理锁状态的转换。锁状态的调整是根据实际的并发情况自动进行的。
后面我们会专门对偏向锁,轻量级锁,重量级锁进行分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1421461.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

杨校老师课堂之基于SpringBoot + Vue3 的充电桩管理平台设计

获取代码&#xff1a; 有偿获取&#xff1a;mryang511688 技术栈 后端 SpringBoot MySQL MyBatis Redis 前端 Vue3.0 ElementUI-Plus Vite 3.开发环境 JDK1.8、Maven3.5.4、MySQL5.7、Redis5.0.5、IntelliJ IDEA2018、 Node14.16.1 4.内置功能 前后端分离的项目&a…

Spring AI项目Open AI绘画开发指导

Spring AI项目创建 Spring AI简介创建Spring AI项目配置项目pom和application文件controller接口开发运行测试 Spring AI简介 Spring AI 是 AI 工程的应用框架。其目标是将 Spring 生态系统设计原则&#xff08;如可移植性和模块化设计&#xff09;应用于 AI&#xff0c;并推广…

【CSP CCF记录】202206-1 归一化处理:fixed和setprecision的使用

题目 代码 注意输出精度&#xff0c;小数保留16位 使用fixed和setprecision控制输出格式 参考文章 #include<bits/stdc.h> using namespace std; const int N1010; int n; double a[N]; double average,D,f[N]; int main() {cin>>n;//计算平均值 double sum0;f…

《编译原理》阅读笔记:p4-p17

《编译原理》学习第 2 天&#xff0c;p4-p17总结&#xff0c;总计 14 页。 一、技术总结 1.structure of compiler 编译器组成包括&#xff1a;Lexical Analyzer -> Syntax Analazer -> Semantic tree -> Intermediate Code Generator -> Machine-Independent C…

IT行业现状与未来趋势-技术创新日新月异

目录 一、引言 二、IT行业现状 技术创新日新月异 市场需求持续增长 人才竞争激烈 网络安全问题凸显 三、IT行业未来趋势 人工智能将更加普及 区块链技术将改变商业模式 网络安全将成为重要战略 数字化转型将加速推进 四、结语 一、引言 随着科技的飞速发展&#x…

【静态分析】软件分析课程实验A2-常量传播和Worklist求解器

Tai-e官网&#xff1a; 概述 | Tai-e 参考&#xff1a; https://www.cnblogs.com/gonghr/p/17979609 -------------------------------------------------------- 1 作业导览 为 Java 实现常量传播算法。实现一个通用的 worklist 求解器&#xff0c;并用它来解决一些数据…

【CSP CCF记录】202209-1 如此编码

题目 过程 C中"/"的使用 当a和被b均为int, long, char这样的整数类型&#xff0c;此时除法运算的结果为所得商的整数部分&#xff0c;例如&#xff1a;180/100&#xff0c;结果为1&#xff1b; int a 180;int b a / 100;cout << b << endl;#结果为1当…

【HCIP学习】BGP对等体组、聚合、路由反射器、联盟、团体属性

一、大规模BGP网络所遇到的问题 BGP对等体众多&#xff0c;配置繁琐&#xff0c;维护管理难度大 BGP路由表庞大&#xff0c;对设备性能提出挑战 IBGP全连接&#xff0c;应用和管理BGP难度增加&#xff0c;邻居数量过多 路由变化频繁&#xff0c;导致路由更新频繁 二、解决大…

机器人学导论实验3-机器人定位中的直线拟合与提取

目录 1 实验目的 2 任务一&#xff1a;直线拟合 2.1 内容分析 2.2 过程分析 2.3 结果分析 3 任务二&#xff1a;直线提取 3.1 内容分析 3.2 过程分析 3.3 结果分析 4 遇到的问题和心得 机器人导论实验-机器人定位中的直线拟合与提取 1 实验目的 2 任务一&#xff1a; 直线…

基于PHP开发的图片高清无损在线压缩源码系统 带完整源代码以及搭建教程

系统概述 高清无损在线压缩源码系统基于PHP语言开发&#xff0c;结合GD库和ImageMagick等图像处理工具&#xff0c;实现了对JPEG、PNG、GIF等多种图片格式的高清无损压缩。系统采用B/S架构&#xff0c;用户只需通过浏览器访问系统界面&#xff0c;即可实现图片的上传、压缩、预…

C语言实现简单的日历功能

开篇 本篇文章的题目来源于《编程珠玑》第三章课后习题的第四个问题&#xff0c;也是我会手动实现的本章的最后一个功能。 问题概要 给定月和年&#xff0c;使用字符数组生成该月的日历&#xff08;含有周几的日历&#xff09;。 思路分析 为了生成给定年份中某个月的日历&…

Axure PR 10 制作顶部下拉三级菜单和侧边三级菜单教程和源码

在线预览地址&#xff1a;Untitled Document 2.侧边三级下拉菜单 在线预览地址&#xff1a;Untitled Document 文件包和教程下载地址&#xff1a;https://pan.quark.cn/s/77e55945bfa4 程序员必备资源网站&#xff1a;天梦星服务平台 (tmxkj.top)

java日期格式化

概括 在Java中&#xff0c;对于日期格式转换&#xff0c;最常用的方法通常是使用java.time包中的DateTimeFormatter类&#xff08;适用于Java 8及以上版本&#xff09;&#xff0c;或者java.text.SimpleDateFormat类&#xff08;适用于旧版Java&#xff09;。然而&#xff0c;…

Java二叉树征服手册:从新手村到数据结构王者

前情提要&#xff1a;Java二叉树秘技&#xff1a;从零构建至优化大师&#xff0c;玩转算法王国 文章目录 七. 代码示例与分析1. 插入操作的代码示例2. 前序遍历的代码示例3. 删除操作的代码示例 八. 性能优化与注意事项内存管理优化内存使用内存分配 时间复杂度分析常见问题与避…

轮播变化背景图也一样替换不同的背景色

<template><!-- 全局轮播子组件 --><view class"banner-box"><!-- 背景色 --><view class"banner-bg" :style"{background-image: url(${bannerBackgroundImage}), linear-gradient(${bannerBackground || #345DC2} 50%,#…

拥抱智能物联新场景,畅享4G智能插座的领先优势!

在智能化浪潮席卷全球的今天&#xff0c;智能插座作为智能家居、智能办公、智能工业、智能校园、智能实验室等领域的核心设备&#xff0c;正逐渐受到人们的关注和青睐。近期&#xff0c;一款全新的4G智能插座正式上市&#xff0c;凭借其独特的优势和创新功能&#xff0c;已经迅…

手机恢复出厂设置后怎么还原数据?2个实用技巧推荐!

随着科技的进步&#xff0c;智能手机已成为我们日常生活中不可或缺的一部分。然而&#xff0c;有时候我们可能会因为各种原因选择恢复手机的出厂设置&#xff0c;这会导致我们的一些重要数据丢失。手机恢复出厂设置后怎么还原数据呢&#xff1f;本文将为您介绍2个实用技巧&…

Windows/Mailing

Mailing Enumeration nmap 使用 nmap 扫描系统&#xff0c;发现对外开放了如下端口 ┌──(kali㉿kali)-[~/vegetable/HTB] └─$ nmap -sC -sV -oA nmap 10.10.11.14 Starting Nmap 7.93 ( https://nmap.org ) at 2024-05-08 01:46 EDT Nmap scan report for 10.10.11.14 H…

【全开源】废品回收微信小程序基于FastAdmin+ThinkPHP+UniApp

介绍 一款基于FastAdminThinkPHPUniApp开发的废品回收系统&#xff0c;适用废品回收站、再生资源回收公司上门回收使用的小程序 功能特性 1、会员注册 支持小程序授权注册和手机号注册 2、回收品类 可设置回收品类&#xff0c;废纸、废金属、废玻璃、旧衣服等 3、今日指导价…

使用Android数据恢复恢复已删除的文件[Windows]

智能手机或平板电脑等 Android 设备为用户提供了发送、接收、处理和存储各种数据的能力。它提供了传统手机无法实现的多功能性和简化功能。即便如此&#xff0c;您管理存储在安卓设备中的数据的方式完全取决于您。如果您的手机出现问题&#xff0c;例如系统崩溃或操作系统更新失…