论文阅读_大语言模型_Llama2

英文名称: Llama 2: Open Foundation and Fine-Tuned Chat Models
中文名称: Llama 2:开源的基础模型和微调的聊天模型
文章: http://arxiv.org/abs/2307.09288
代码: https://github.com/facebookresearch/llama
作者: Hugo Touvron
日期: 2023-07-19
引用次数: 110

1 读后感

这是一篇77页的论文,正文也有36页,让人望而却步。整体分成:Introduction,Pretraining,Fine-tune,Safety,Discussion,RelateWork, Conclusion几部分,如果没有时间,看看前三个部分,大概20页左右也就差不多了。

产出的模型从7B到70B参数,其成果除了基本的 LLAMA-2 模型,还有精调的 LLAMA 2-CHAT 模型,其精调模型与 ChatGPT (3.5) 性能相当,可作为闭源模型的替代品,且 70B 的体量也是可接受的。

在基础模型方面,文章中没有涉及很新的算法,主要偏重工程化,通过实验,产生一些经验性的结论,比如什么情况下会 over-fitting,对于 SFT 和 RLHF 标注应该如何分配资源,如何设置模型超参数,用蒸馏方法利用大模型训练小模型等等。

之前开源模型对 RLHF 的具体方法讨论不多,而本文算法调整主要在强化学习部分,比如在RLHF中如何训练奖利模型以更好地利用偏好标注;选择PPO和Rejection Sampling作为强化学习的策略优化网络参数。如果你对 RLHF 具体实现感兴趣,比较推荐看看这篇文章。

2 介绍

之前的开源模型效果往往与GPT-3相当,而像ChatGPT、BARD 和 Claude 这些封闭的大在模型经过 RLHF 精调,更符合人类偏好。精调往往需要巨大的算力和人工标注成本,且常是不透明且不易复制的,这限制了社区推进人工智能对齐的进展,文章致力于改进此问题。

文章产出包括:

  • Llama 2 :Llama 1 的更新版本,使用新的公开数据组合进行训练。还将预训练语料库的大小增加了 40%,将模型的上下文长度加倍,并采用分组查询注意力机制。最终发布具有 7B、13B 和 70B 参数的 Llama 2 基础模型。
  • Llama 2-Chat:Llama 2 的微调版本,针对对话用例进行了优化。也发布了具有 7B、13B 和 70B 参数的模型。

3 预训练

预测训练使用了 从 Touvron(2023 原 Llama论文)中描述的预训练方法。使用优化的自回归Transformer,又使用了:更稳健的数据清理,更新了数据混合,增加了 40% Token 进行了训练,将上下文长度加倍,并使用分组查询注意力 (GQA) 来提高大模型的推理可扩展性。表-1 比较了新 Llama 2 与 Llama 1。
[图片上传失败...(image-8c1ec7-1695215062279)]

从图-2中可以看到,纵轴是 Loss,当训练数据增加到2T时,模型仍在优化:

在这里插入图片描述
模型使用 A-100 80G 集群训练,表-2展示了模型使用的算力和碳排:

在这里插入图片描述
由于模型最终被发布,后续模型可以基于该模型调优,从这个角度看,开放的模型也可以算是减少了大模型的全球碳排。

在评测方面,文章对比了主流的开源模型和闭源模型,主要在:编码,常识推理,世界知识,阅读理解,数学,聚合评测(如:MMLU,BBH,AGI Eval)方面进行了评测:

在这里插入图片描述
在这里插入图片描述

可以看到,Llama-2 各项结果明显优于当前的开源模型,和闭源模型相比有差异。请注意:这是预训练的版本,后面还会继续比较 fine-tune 之后的结果。

4 精调

Llama 2-Chat 主要使用了对齐技术(包括 SFT 和 RLHF)需要大量的计算和标注资源。另外,还使用了 Ghost Attention (GAtt) 注意力机制来优化多轮对话。

4.1 SFT 有监督微调

SFT supervised fine-tuning 有监督微调,也叫作 instruction tuning 指令微调。一对标注数据一般包含一个提示和一个答案,训练时只对答案部分进行反向传播调优网络。一开始使用了公开的指令调优数据;在实验过程中发现,高质量的标注数据可有效提升模型效果,不需要太多标注,只需要上万条高质量数据即可达到很好效果,最终使用 27,540 个标注数据。从而把更多精力用于 RLHF 标注。

4.2 RLHF 人类反馈的强化学习

人类反馈的强化学习 RLHF(Reinforcement Learning with Human Feedback)用于对齐模型行为和人类偏好,简单地说,就是让标注者选择他们喜欢的两个模型输出中的哪一个。随后用标注数据训练奖励模型,该模型用于后续对偏好进行预测。

4.2.1 人类偏好的数据收集

标注过程如下:首先要求注释者编写提示,然后根据要求在两个模型的返回结果之间进行选择。除了选择哪个更好,还要求他们标记对更喜欢答案的喜爱程度:明显更好,更好,稍微更好,或者可以忽略/不确定。

标注关注答案”有用性“和”安全性“,在安全方面,比如:用户提问“怎么做炸弹”返回的答案就可能是不安全的。安全性标注包括三个选项:优选答案安全另一个不安全;答案都不安全;答案都安全。这里认为人们会优选更安全的答案。

表-6 展示了标注的数据和其它开源数据集的比较结果。可以看到:摘要和在线论坛数据的提示通常较长,而对话式的提示通常较短。与现有的开源数据集相比,文中收集的偏好数据具有更多的对话轮次,并且平均时间更长。

在这里插入图片描述

4.2.2 奖励模型

奖励模型的输入是:提示、模型响应(包括之前的上下文),输出是标量分数以指示模型生成的质量(有用性和安全性)。利用模型响应分数作为奖励,在后续的 RLHF 期间优化 Llama 2-Chat。

为了解决有用性和安全性有时相互抵消的问题,实验训练了两个单独的奖励模型,一个针对有用性进行优化,另一种针对安全性进行优化。另外,使用预训练的聊天模型初始化奖励模型,使模型都受益于预训练中获得的知识;模型架构和超参数与预训练语言模型相同,只是将下一个标记预测的分类头替换为用于输出标量奖励的回归头。

最终训练模型时使用了开源标注数据和新的标注数据。
在这里插入图片描述
从图-6中可以看到,在逐步收集数据过程中模型性能的变化:更多的数据和更大的模型会提高准确性,如果有更多数据,模型性能还可能进一步提升。后续实验也证明,在其他条件相同的情况下,奖励模型的改进可以直接转化为 Llama 2-Chat 的改进。

4.2.3 迭代微调

随着得到更多批次的偏好数据标注,通过训练更好的奖励模型并收集更多提示。从逐步训练迭代模型:从 RLHF-V1 … 到 RLHF-V5。这里使用了两种算法:近端策略优化 PPO 和 拒绝采样微调 Rejection Sampling fine-tuning。

在 RLHF (V4) 之前,仅使用拒绝采样微调,之后,将两者结合起来,在再次采样之前在生成的拒绝采样检查点之上应用 PPO。从而在探索和当前最优策略之间取得平衡。
图-8展示了温度的影响:更高的温度将对更多样化的输出进行采样,最佳温度是 T ∈ [1.2, 1.3]。
在这里插入图片描述

拒绝采样微调
从模型中采样 K 个输出,并根据奖励选择最佳候选者,然后使用选定的输出进行梯度更新。对于每个提示,奖励分数最高的样本被认为是新的金标准。

PPO 近端策略优化
PPO的优化目标是:最终通过训练模型得到策略 π,以最大化奖励 R。

arg ⁡ max ⁡ π E p ∼ D , g ∼ π [ R ( g ∣ p ) ] \arg \max _{\pi} \mathbb{E}_{p \sim \mathcal{D}, g \sim \pi}[R(g \mid p)] argπmaxEpD,gπ[R(gp)]

其中 R 是 奖励,D 是数据集,p是prompt,通过策略 π 产生 g。

最终的奖励,还考虑了当前策略与初始策略的差异作为惩罚项(使用KL散度计算),以避免过大的调整,保证了训练的稳定性。

R ( g ∣ p ) = R ~ c ( g ∣ p ) − β D K L ( π θ ( g ∣ p ) ∥ π 0 ( g ∣ p ) ) R(g \mid p)=\tilde{R}_{c}(g \mid p)-\beta D_{K L}\left(\pi_{\theta}(g \mid p) \| \pi_{0}(g \mid p)\right) R(gp)=R~c(gp)βDKL(πθ(gp)π0(gp))

另外,这里的奖励函数 Rc 综合了可用性和安全性。

4.3 多轮一致性

文中提出了 Ghost Attention (GAtt),这种微调使数据更关注多轮对话,而不会快速忘记早期的内容。请注意:这里的 Attention 不是对模型 Transformer 结构中注意力的优化。该方法让模型更注重第一轮对话,比如:请扮演XXX,用法语回答。其效果如下,右侧使用了 Gattr,可以看到,它更容易接受初始设置的”用表情回答“。
在这里插入图片描述

4.4 RLHF 结果

在这里插入图片描述

图-11 展示了 Llama 2-Chat 与 ChatGPT 相比的获胜率百分比,多次迭代微调后的演变结果。左侧图的判断标准是文中的奖励模型,可能对文中的模型有利,右侧的判断标准是GPT-4,更为中立。RLHF-V3 后文中模型在两个轴上都优于 ChatGPT(无害性和有用性 >50%)。

[图片上传失败...(image-ae0aa9-1695215349343)]

图-12展示了 Llama-2 各个版本与其它模型在人工评测方面的对比结果,从最右图可以看到,Llama-2 70B-chat 与 ChatGPT gpt-3.5-turbo-0301 效果相当,或者说已经超过了 ChatGPT 3.5。(图中的 tie 指平局率)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/140700.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C语言数组和指针笔试题(四)(一定要看)

目录 二维数组例题一例题二例题三例题四例题五例题六例题七例题八例题九例题十例题十一 结果 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒个人主页 🥸🥸🥸C语言 🐿️…

SWC 流程

一个arxml 存储SWC (可以存多个,也可以一个arxml存一个SWC)一个arxml 存储 composition (只能存一个)一个arxml 存储 system description (通过import dbc自动生成system) 存储SWC和composition的arxml文件分开&#…

如何用好免费的ChatGPT

如何用好免费的ChatGPT 前言ChatGPT使用入口在线体验地址:点我体验 ChatGPT介绍ChatGPT初级使用技巧初级使用技巧:清晰明了的问题表达 ChatGPT中级使用语法中级使用语法:具体化问题并提供背景信息 ChatGPT高级使用高级使用:追问、…

安防监控系统/视频云存储/视频监控平台EasyCVR无法级联上级平台,该如何解决?

安防视频监控系统EasyCVR平台能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流,也…

Linux三大搜索指令的区别

find:可以在指定的路径下进行文件的搜索 —— 真的在磁盘文件中查找 例如find /usr/bin/ -name ls which 可以在指令路径下,/usr/bin,搜索指令文件 例如:which ls whereis:在系统特定的路径下查找,既可以找到可执行程序&#xff…

设计模式之观察者(发布订阅)模式

观察者模式定义了一种一对多的依赖关系,让多个观察者对象同事监听某一个主题对象。这个主题对象在状态发生变化时,会通知所有观察者对象,使它们能够自动更新自己 class Program{static void Main(string[] args){ConcreteSubject concreteSu…

字符串函数

目录 一、求字符串长度 strlen 用法: 注意: 用例: 二、长度不受限制的字符串函数 strcpy 用法: 注意: 用例: strcat 用法: 注意: 用例: strcmp 用法: 三…

Vue系列(三)之 基础语法下篇【事件处理,表单综合案例,组件通信】

一. 事件处理 在 Vue.js 中,v-on 指令被用于监听 DOM 事件,并在事件触发时执行相应的方法,这些方法就是事件处理器。v-on 指令有简写形式 ,例如 click"handleClick" 会监听点击事件并执行 handleClick 方法。 事件处理…

1小时掌握Python操作Mysql数据库之pymysql模块技术

大家好,我是python222小锋老师。前段时间卷了一套 Python3零基础7天入门实战 近日锋哥又卷了一波课程,Python操作Mysql数据库的pymysql技术,文字版视频版。1小时掌握。 视频版教程 1小时掌握Python操作Mysql数据库之pymysql模块技术 文字版…

RHCSA_Linux 从命令行管理文件

目录 一、文件命令规范: 二、创建链接文件 1、创建软链接文件 2、创建硬链接文件 三、目录操作命令 1、创建目录 -- mkdir 2、统计目录及文件的空间占用情况 -- du 3、删除目录文件 四、创建、删除普通文件 1、创建普通文件 2、删除普通文件 五、数据流和…

golang实现远程控制主机

文章目录 ssh原理使用golang远程下发命令使用golang远程传输文件 ssh原理 说到ssh原理个人觉得解释最全的一张图是这张华为画的 Connection establishment 这一步就是建立tcp连接 version negotiation 这一步是ssh客户端(连接者)和被ssh服务端(连接者)进行协议的交换&#xf…

Redis桌面管理工具Redis Desktop Manager mac中文版功能特色

Redis Desktop Manager for Mac是一款实用的Redis可视化工具。RDM支持SSL / TLS加密,SSH隧道,基于SSH隧道的TLS,为您提供了一个易于使用的GUI,可以访问您的Redis数据库并执行一些基本操作:将键视为树,CRUD键…

Springboot整合分页插件pagehelper

首先需要有一定的springbootmybatis的基础&#xff0c;才能使用顺畅 项目结构如下 引入依赖&#xff0c;springboot版本选的是2.7.16版本&#xff0c;jdk选的17&#xff0c; <!--分页插件--> <dependency><groupId>com.github.pagehelper</groupId><…

静态通讯录

今天我们分享一下静态通讯录详细解释和代码&#xff0c;之前分享过的只是通讯录的代码&#xff0c;但是我们没有进行讲解和解释&#xff0c;今天我们一边分享它的代码一边解释原因&#xff0c;让大家可以手撕通讯录。现在开始我们的学习吧。 首先我们应该要有三个文件&#xf…

java面试题-jvm基础知识

1 JVM组成 1.1 JVM由那些部分组成&#xff0c;运行流程是什么&#xff1f; 难易程度&#xff1a;☆☆☆ 出现频率&#xff1a;☆☆☆☆ JVM是什么 Java Virtual Machine Java程序的运行环境&#xff08;java二进制字节码的运行环境&#xff09; 好处&#xff1a; 一次编写&a…

计算机丢失msvcp140_1.dll的解决办法,丢失msvcp140_1.dll的原因

丢失 msvcp140_1.dll 是一个常见的错误信息&#xff0c;通常会在尝试运行某些程序时出现。msvcp140_1.dll 是一个动态链接库文件&#xff0c;它包含了许多 C标准库函数的实现&#xff0c;这些函数在许多程序中都是必需的。因此&#xff0c;如果丢失了该文件&#xff0c;程序可能…

微软最热门的10款前端开源项目!

本文来盘点微软开源的十大前端项目&#xff0c;这些项目在 Github 上获得了超过 45 万 Star&#xff01; Visual Studio Code Visual Studio Code 是一款由微软开发的开源的代码编辑器。它支持多种编程语言&#xff0c;如C、C、C#、Python、JavaScript 和 TypeScript 等&…

记一次linux下pip安装包时出错及奇怪的解决过程

一、问题说明 如图&#xff0c;在使用pip安装测速工具speedtest-cli时&#xff0c;终端提示“Externally managed environment &#xff08;从外部管理的环境&#xff09;”&#xff0c;导致无法安装该库。 二、问题解决 1 尝试提示的解决方案&#xff0c;改用命令apt inst…

c++获取当前时间的字符串

代码 void getNowTimePrefix(std::string& prefix) {std::time_t nowTime;struct tm* p new tm;std::time(&nowTime);localtime_s(p, &nowTime);int year p->tm_year 1900;int month p->tm_mon 1;int day p->tm_mday;int hour p->tm_hour;int …

机器学习算法基础--逻辑回归

目录 1.数据收集及处理 2.数据提取及可视化 3.逻辑回归训练样本并且测试 4.绘制散点决策边界 逻辑回归的方法已经在数学建模里面讲过了&#xff0c;这里就不多讲了。 本篇我们主要是利用逻辑回归的方法来求解分类问题。 1.数据获取及处理 import pandas as pd from sklearn…