竞赛选题 基于深度学习的植物识别算法 - cnn opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tfimport numpy as npfrom tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  


4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数loss = torch.nn.BCELoss()l = loss(pred,real)# 多分类损失函数loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/139166.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

vue3硅谷甄选01 | 使用vite创建vue3项目及项目的配置 环境准备 ESLint配置 prettier配置 husky配置 项目集成

文章目录 使用vite创建vue3项目及项目的配置1.环境准备2.项目配置ESLint校验代码工具配置 - js代码检测工具1.安装ESLint到开发环境 devDependencies2.生成配置文件:.eslint.cjs**3.安装vue3环境代码校验插件**4. 修改.eslintrc.cjs配置文件5.生成ESLint忽略文件6.在package.js…

PIL或Pillow学习2

接着学习下Pillow常用方法&#xff1a; PIL_test1.py : 9, Pillow图像降噪处理由于成像设备、传输媒介等因素的影响&#xff0c;图像总会或多或少的存在一些不必要的干扰信息&#xff0c;我们将这些干扰信息统称为“噪声”&#xff0c; 比如数字图像中常见的“椒盐噪声”&…

Postman使用_接口导入导出

文章目录 Postman导入数据Collections导出数据Environments导出数据Postman导出所有数据 Postman导入数据 可以导入collections&#xff08;接口集&#xff09;、Environments&#xff08;环境配置&#xff09;通过分享的链接或导出的JSON文件导入数据&#xff08;还可以从第三…

Pixea Plus for Mac:极简图片浏览,高效图片管理

在处理和浏览图片时&#xff0c;我们往往需要一个得心应手的工具&#xff0c;尤其是当你的图片库包含了各种不同格式&#xff0c;例如JPEG、HEIC、psd、RAW、WEBP、PNG、GIF等等。今天&#xff0c;我们要推荐的&#xff0c;就是一款极简、高效的Mac图片浏览和管理工具——Pixea…

Crazy Excel:Excel中的泥石流

Crazy Excel又名&#xff1a;疯狂Excel。是一款PC端的Excel软件工具&#xff0c;该软件支持windows, mac os等主流操作系统。 正如其名&#xff0c;作者在设计之初就加入了一些疯狂的设计&#xff0c;目的是创作出更加好用有效的excel工具。 不管是专业还是小白&#xff0c;…

前后台分离开发 YAPI平台 前端工程化之Vue-cli

目录 YAPI介绍前端工程化之Vue-cli前端工程化简介前端工程化入门——Vue-cli环境准备Vue项目简介创建Vue项目vue项目目录结构介绍vue项目运行方法 Vue项目开发流程 前后台混合开发这种开发模式有如下缺点&#xff1a; 沟通成本高&#xff1a;后台人员发现前端有问题&#xff0…

【Redis】第5讲 Redis的下载并安装

下载Redis中文网https://www.redis.net.cn/ 百度网盘下载&#xff1a; 百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固&#xff0c;支持教育网加速&#xff0c;支持手机端。注册使用百度网盘即可享受免费存储空间https://p…

malloc与free

目录 前提须知&#xff1a; malloc&#xff1a; 大意&#xff1a; 头文件&#xff1a; 申请空间&#xff1a; 判断是否申请成功&#xff1a; 使用空间&#xff1a; 结果&#xff1a; 整体代码&#xff1a; malloc申请的空间怎么回收呢? 注意事项&#xff1a; free:…

VirtualBox Win7 虚拟机 共享文件夹设置

系统配置 VirtualBox虚拟机版本&#xff1a;6.1.46 主机Host&#xff1a;Win11 虚拟机&#xff1a;Win7-32位 添加虚拟光驱 为虚拟机添加虚拟光驱&#xff0c;光驱中导入VBoxGuestAdditions.iso文件。 该文件默认路径为&#xff1a; X:\Program Files\Oracle\VirtualBox\V…

Nmap安装和使用详解

Nmap安装和使用详解 Nmap概述功能概述运行方式 Nmap安装官方文档参考&#xff1a;Nmap参数详解目标说明主机发现端口扫描Nmap将目标主机端口分成6种状态&#xff1a;Nmap产生结果是基于机器的响应报文&#xff0c;而这些主机可能是不可信任的&#xff0c;会产生一些迷惑或者误导…

使用vue-cli搭建SPA项目及使用和路由及路由嵌套的使用

目录 一、介绍 ( 1 ) 概述 ( 2 ) 作用 二、项目搭建 SPA介绍 讲述 特点 优点 ( 1 ) 检查 ( 2 ) 安装 ( 3 ) 构建 ( 4 ) 启动 ( 5 ) 导入 三、路由及嵌套使用 ( 1 ) 路由 ( 2 ) 嵌套 给我们的收获 一、介绍 ( 1 ) 概述 vue-cli是一个基于Vue.js的脚…

uni-app 实现自定义按 A~Z 排序的通讯录(字母索引导航)

创建 convertPinyin.js 文件 convertPinyin.js 将下面的内容复制粘贴到其中 const pinyin (function() {let Pinyin function(ops) {this.initialize(ops);},options {checkPolyphone: false,charcase: "default"};Pinyin.fn Pinyin.prototype {init: functi…

研究生选控制嵌入式还是机器视觉好?

研究生选控制嵌入式还是机器视觉好&#xff1f; 我是嵌入式/硬件方向转的算法&#xff0c;现在是公司的算法负责人&#xff0c;如果再让我选一次&#xff0c;我是不会再选嵌入式方 向&#xff0c;嵌入式如果只做技术是没前途的。 你要是有一定自学能力&#xff0c;能自己在学校…

汽车行业新闻稿怎么写?怎么写关于汽车的新闻稿?

撰写汽车行业新闻稿需要遵循一定的结构和要点&#xff0c;以确保内容准确、清晰&#xff0c;并能吸引读者的兴趣。以下是关于汽车的新闻稿的一些写作要点和建议&#xff0c;接下来伯乐网络传媒就来给大家分享一下&#xff1a; 标题醒目&#xff1a;新闻稿的标题应该简洁明了&am…

APP应用在Google Play上架/更新被拒的原因及解决方法汇总

Google Play商店作为全球发布Android应用的领先平台之一&#xff0c;吸引了数百万开发人员的关注。 然而&#xff0c;要在Google Play商店上架和更新应用并不容易。商店有严格的规定和审核政策&#xff0c;需要开发者遵守。 一、谷歌上架方式 1、NewUpdate 正式发布后最主流…

深入探究序列化与反序列化:原理、应用和最佳实践

目录 什么是对象的序列化和反序列化序列化步骤反序列化步骤案例演示Java中哪些字段不能序列化序列化与反序列化的重要性序列化与反序列化的应用场景 什么是对象的序列化和反序列化 序列化&#xff08;Serialization&#xff09;是指将对象转化为字节流的过程&#xff0c;以便于…

企业进行品牌推广时怎么才能达到预期广告效应?不如试试软文营销

企业进行品牌推广的目的就在于提升品牌的曝光率&#xff0c;树立该品牌在市场中的形象&#xff0c;加强品牌的影响力与公信力&#xff0c;提高产品的竞争力&#xff0c;那么企业进行品牌推广时怎么才能达到预期效果呢&#xff0c;我们可以试试软文营销&#xff0c;接下来媒介盒…

QT-day2

完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&#xff0c;给定两个按钮…

最新Java JDK 21:全面解析与新特性探讨

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

MYSQL性能优化——基于成本的优化

MYSQL性能优化 详见 GitBook MYSQL性能优化 什么是成本 我们之前老说MySQL执行一个查询可以有不同的执行方案&#xff0c;它会选择其中成本最低&#xff0c;或者说代价最低的那种方案去真正的执行查询。不过我们之前对成本的描述是非常模糊的&#xff0c;其实在MySQL中一条查…