基于卷积神经网络的棉花病虫害识别与防治系统,resnet50,mobilenet模型【pytorch框架+python源码】

 更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

棉花病害识别与防治系统,卷积神经网络,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的棉花病虫害识别与防治系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。

该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由pyqt5设计和实现,界面中给出模型预测病害的结果、概率和对应的防治措施。此项目的两个模型可做对比分析,增加工作量。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

超详细的pycharm+anaconda搭建python虚拟环境_pycharm虚拟环境搭建-CSDN博客

(二)项目介绍

1. 项目结构

​​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单

以训练resnet50模型为例:

第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数

​ 

第二步:模型训练和验证,即直接运行model_resnet50.py文件

第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果

2. 数据结构

​​​​​

部分数据展示: 

​​​​

3.GUI界面(技术栈:pyqt5+python+opencv) 
1)gui初始界面 

2)gui分类、识别界面 

​​​​

4.模型训练和验证的一些指标及效果
​​​​​1)模型训练和验证的准确率曲线,损失曲线

​​​​​2)热力图

​​3)准确率、精确率、召回率、F1值

4)模型训练和验证记录

​​

(三)代码

由于篇幅有限,只展示核心代码

    def main(self, epochs):# 记录训练过程log_file_name = './results/resnet50训练和验证过程.txt'# 记录正常的 print 信息sys.stdout = Logger(log_file_name)print("using {} device.".format(self.device))# 开始训练,记录开始时间begin_time = time()# 加载数据train_loader, validate_loader, class_names, train_num, val_num = self.data_load()print("class_names: ", class_names)train_steps = len(train_loader)val_steps = len(validate_loader)# 加载模型model = self.model_load()  # 创建模型# 修改全连接层的输出维度in_channel = model.fc.in_featuresmodel.fc = nn.Linear(in_channel, len(class_names))# 模型结构可视化x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入# 模型结构保存路径model_visual_path = 'results/resnet50_visual.onnx'# 将 pytorch 模型以 onnx 格式导出并保存torch.onnx.export(model, x, model_visual_path)  # netron.start(model_visual_path)  # 浏览器会自动打开网络结构# 将模型放入GPU中model.to(self.device)# 定义损失函数loss_function = nn.CrossEntropyLoss()# 定义优化器params = [p for p in model.parameters() if p.requires_grad]optimizer = optim.Adam(params=params, lr=0.0001)train_loss_history, train_acc_history = [], []test_loss_history, test_acc_history = [], []best_acc = 0.0for epoch in range(0, epochs):# 下面是模型训练model.train()running_loss = 0.0train_acc = 0.0train_bar = tqdm(train_loader, file=sys.stdout)# 进来一个batch的数据,计算一次梯度,更新一次网络for step, data in enumerate(train_bar):# 获取图像及对应的真实标签images, labels = data# 清空过往梯度optimizer.zero_grad()# 得到预测的标签outputs = model(images.to(self.device))# 计算损失train_loss = loss_function(outputs, labels.to(self.device))# 反向传播,计算当前梯度train_loss.backward()# 根据梯度更新网络参数optimizer.step()  # 累加损失running_loss += train_loss.item()# 每行最大值的索引predict_y = torch.max(outputs, dim=1)[1]  # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falsetrain_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()# 更新进度条train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,epochs,train_loss)# 下面是模型验证# 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化model.eval()# accumulate accurate number / epochval_acc = 0.0  testing_loss = 0.0# 张量的计算过程中无需计算梯度with torch.no_grad():  val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar:# 获取图像及对应的真实标签val_images, val_labels = val_data# 得到预测的标签outputs = model(val_images.to(self.device))# 计算损失val_loss = loss_function(outputs, val_labels.to(self.device))  testing_loss += val_loss.item()# 每行最大值的索引predict_y = torch.max(outputs, dim=1)[1]  # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falseval_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()train_loss = running_loss / train_stepstrain_accurate = train_acc / train_numtest_loss = testing_loss / val_stepsval_accurate = val_acc / val_numtrain_loss_history.append(train_loss)train_acc_history.append(train_accurate)test_loss_history.append(test_loss)test_acc_history.append(val_accurate)print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %(epoch + 1, train_loss, val_accurate))# 保存最佳模型if val_accurate > best_acc:best_acc = val_accuratetorch.save(model.state_dict(), self.model_name)# 记录结束时间end_time = time()run_time = end_time - begin_timeprint('该循环程序运行时间:', run_time, "s")# 绘制模型训练过程图self.show_loss_acc(train_loss_history, train_acc_history,test_loss_history, test_acc_history)# 画热力图test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)# 计算混淆矩阵self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)

​​​​​(四)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

整套项目资料齐全,一步到位,省心省力。

项目运行过程如出现问题,请及时交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/1376.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

基于STM32的智能停车场管理系统设计

引言 本项目旨在基于STM32微控制器设计一个智能停车场管理系统。该系统集成了多种传感器和控制模块,以实现停车位实时检测、车辆识别、自动控制栏杆、车位信息显示和云端数据管理等功能。智能停车场管理系统可以有效提升停车场的运转效率,改善车主的停车…

《大数据与人工智能:提升数据质量与数量的利器》

《大数据与人工智能:提升数据质量与数量的利器》 一、大数据与人工智能的融合趋势二、大数据增加数据数量的方法(一)不同途径的数据增量(二)数据增强的多样方法 三、人工智能提升数据数量的手段(一&#xf…

C/C++常用编译工具链:GCC,Clang

目录 GNU Compiler Collection GCC的优势 编译产生的中间文件 Clang Clang的特点 什么是LLVM? Clang编译过程中产生的中间表示文件 关于Clang的调试 C 编译工具链中有几个主要的编译工具,包括: GNU Compiler Collection (GCC…

停车位类型分割系统:一条龙教学体系

停车位类型分割系统源码&数据集分享 [yolov8-seg-aux&yolov8-seg-C2f-DAttention等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Global Al l…

DICOM标准:CR图像模块属性详解——计算放射线照相术(CR)及其在DICOM中的表示

目录 CR图像及其在DICOM中的表示 1 计算放射线照相术 1.1 CR序列组件 1.1 -- CR 序列模块属性 1.2 CR 图像模块 表1.2 -- CR 图像模块属性 结论 CR图像及其在DICOM中的表示 计算放射线照相术(Computed Radiography, CR)是一种利用计算机技术对传统…

springboot 基于web的动漫会员购系统,计算机毕业设计项目源码 024,计算机毕设程序(LW+开题报告、中期报告、任务书等全套方案)

摘 要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,动漫艺术当然也不例外。动漫会员购系统是以实际运用为开发背景,运用软件工程原理和开发方法,采用…

dns构建

(1)用户输入域名发起域名查询请求。 (2)计算机操作系统先查找本地hosts文件中是否有这个域名与IP的对应关系,有就返回结果给用户,没有就进入下一步。 (3)hosts文件找那个没有此域名…

深度了解flink(九) JobManager(3) HA分析

HA核心类、接口 HighAvailabilityServices HighAvailabilityServices是HA Service的核心接口,具体功能如下: 1.定义了高可用组件(Dispatcher、ResourceManager等)的leader选举接口和leader获取接口 2.检查点元数据的持久&…

爱普生SG-8101CA可编程晶振应用在工业自动化机器人

在工业自动化的浪潮中,机器人无疑是最耀眼的明星,它们以高效、精准的工作能力重塑了现代工业生产的格局。而在这些工业自动化机器人的核心深处,爱普生 SG - 8101CA 可编程晶振就像一颗强大而稳定的心脏,为机器人的卓越表现提供了坚…

【HarmonyOS】引导用户跳转APP设置详情页开启权限

【HarmonyOS】引导用户跳转设置APP详情页开启权限 前言 众所周知在鸿蒙应用中,向用户申请权限时,会弹出系统请求授权的弹框。当用户拒绝了你申请的权限,弹框会直接关闭。当下次触发同样的权限申请,会直接返回失败,不…

【大数据学习 | HBASE】hbase的原理与组成结构

1. hbase的简述 hbase作为google的大数据三篇比较重要的论文之一,它的起源叫做bigtable,意思非常简单就是大表的意思,是一个分布式存储很多数据的大型表格系统,它是对于hdfs中的数据不能直观查询和随机读写的病痛的一个补充和完善…

在Zetero中调用腾讯云API的输入密钥的问题

也是使用了Translate插件了,但是需要调用腾讯云翻译,一直没成功。 第一步就是,按照这上面方法做:百度、阿里、腾讯、有道各平台翻译API申请教程 之后就是:Zotero PDF translat翻译:申请腾讯翻译接口 主要是…

再探“构造函数”(2)友元and内部类

文章目录 一. 友元‘全局函数’作友元‘成员函数’作友元‘类‘作友元 内部类 一. 友元 何时会用到友元呢? 当想让(类外面的某个函数/其它的类)访问 某个类里面的(私有或保护的)内容时,可以选择使用友元。 友元提供了一种突破&a…

(新)docker desktop镜像迁移

背景 docker desktop默认安装在系统c盘,久而久之随着镜像拉取的越多,系统盘占用则越来越大。现有的网络资源关于docker desktop迁移都是旧版本的,即4.30版本之前。在4.30版本及以后,在运行wsl -l -v时只有docker-desktop只有这一项…

19种RAG结构

文章目录 什么是RAG19种RAG总览Standard RAGCorrective RAG,纠错型RAGSpeculative RAG,推测型RAGFusion RAG,融合型RAGAgentic RAG,智能代理型RAGSelf RAG,自增强型RAGGraph RAG,图谱RAGAdaptive RAGREALM:…

flink 内存配置(一):设置Flink进程内存

Apache Flink通过严格控制各个组件的内存使用,在JVM之上提供了高效的工作负载。虽然Flink社区努力为所有配置提供合理的默认值,但由于用户部署在Flink上的应用范围很广,这并不总是可行的。为了给用户提供最大的生产价值,Flink支持…

ssm037物流管理系统设计与实现+jsp(论文+源码)_kaic

毕 业 设 计(论 文) 题目:物流管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本物流管理系统就是在这…

扩展卡尔曼滤波(EKF)的限制

当f (x)或h (x)接近线性时,EKF在许多实际问题上表现良好。然而,它在高度非线性的区域中失败了 EKF的概念是基于模型的线性化而提出的。EKF估计包括线性化误差。线性化误差取决于相对于传播的不确定度的函数的非线性度,如下图所示。 图13.13…

【ChatGPT】搜索趋势分析

【ChatGPT】搜索趋势分析 为了分析 ChatGPT 在过去一年的流行趋势,我们可以查看 Google Trends 的数据 安装依赖pytrends pip install pytrends运行以下 Python 脚本 import pandas as pd import matplotlib.pyplot as plt from pytrends.request import TrendR…

ctfshow——web(总结持续更新)

文章目录 1、基础知识部分2、php伪协议2.1 php://input协议2.2 data://text/plain协议 3、webshell连接工具3.1 蚁剑连接一句话木马 4、各个web中间件重要文件路径4.1 Nginx 5、sqlmap使用6、php特性6.1 md5加密漏洞 7、TOP 10漏洞7.1 SQL注入 1、基础知识部分 识别base64编码…