【Linux探索学习】第十二弹——初识进程:进程的定义、描述和一些简单的相关操作

Linux学习笔记:

https://blog.csdn.net/2301_80220607/category_12805278.html?spm=1001.2014.3001.5482

前言:

在前面经过那么多篇的铺垫后,今天我们正式进入Linux学习的第一个重难点——进程,理解进程对于我们学习操作系统的其它部分,尤其是多文件处理和资源管理十分重要,下面我们正式进入进程的第一篇讲解

目录

一、进程概念

二、进程描述

三、查看进程

四、通过系统调用获取进程标识符

五、通过系统调用创建进程——初识fork

六、总结


一、进程概念

进程是一个正在执行的程序的实例。它不仅包括程序的代码,还包括程序的当前活动、寄存器、程序计数器、堆栈及其所有与执行相关的资源。简单来说,进程是一个程序在运行时的一个动态实体。

需要注意的一点是进程的程序是一定被加载在内存中的,因为进程是系统将要进行处理的数据,而CPU是从内存中获取数据的,所以说进程的程序一定被加载在内存中的,比如我们vim写的一个.c的C语言程序,它在操作系统下的本质就是一个文件,是存放在外设中的,当运行起来时,我们就会将它的相关数据存放到内存中去,以便于CPU直接获取

二、进程描述

一个操作系统可能可以同时进行多个进程,比如我们可以让多个程序同时进行,我们的电脑可以同时跑多个软件,为了避免进程执行起来互相干扰,所以我们要对进程进行管理

一般进行管理的过程就是:先描述+再组织

所以我们要进行进程描述:任何一个进程,在被加载到内存,形成真正的进程时,操作系统都要先创建描述进程的结构体对象——PCB,也叫做进程控制块,可以理解为进程属性的集合,操作系统是C语言写的,所以PCB一定是一个struct结构体,PCB中会包含进程如下的重要信息:

  • 进程ID(PID):唯一标识一个进程的编号。
  • 进程状态:当前进程的状态。
  • 程序计数器:指向当前执行指令的地址。
  • CPU寄存器:进程在执行时的寄存器内容。
  • 内存管理信息:如页表和段表。
  • 进程优先级:调度时的优先级信息。

此外为了方便管理进程,处理进程与进程之间的关系,进程在内存中是以队列的形式存在的,具体点来讲就是链表(双链表),进程在内存中的存在形式可以抽象为下图:

由于PCB中包含着进程的所有信息,所以对进程管理的本质其实就是对进程的PCB做管理,进程在操作系统又通过队列进行链接,所以对进程的管理,其实就是对链表的增删改查

这里的PCB是针对所有操作系统而言的,在我们的Linux中我们往往习惯称呼这个概念为task struct

三、查看进程

在上面我们讲到进程的许多属性,包括进程编号、进程状态等等许多内容

首先我们可以通过查看/proc/文件,来查看我们目前正在执行的全部进程

ls /proc/

这些数字就是进程的PID,每个进程都会有一个对应的PID,PID就是我们上面所说的进程ID,也叫做进程标识符,我们可以通过这些进程标识符来查看每个进程具体的信息,比如查看1号进程

ls /proc/1

除了上面的这个方法外,我们还可以通过下面这个指令,不仅可以看到所有的进程,还可以看到它们的进程的属性信息:

ps axj

我们节选一部分:

执行结果的第一行就是我们的进程属性信息的列名,下面就是每个进程对应的属性信息,我们可以只打印出一行来看一下进程属性的内容(需要借助之前的知识:管道 | 和打印行数head)

ps axj | head -1

对于这些属性信息中,我们先记住前两个就行了,PPID指的是父进程标识符,PID知道是当前进程标识符

目前我们自己创建的可执行文件有test

我们可以查看下我们自己创建的这个进程的相关信息(注意只有当我们的程序在跑着的时候它才叫进程,所以我们可以将我们的程序写成一个死循环,然后让它执行起来)

ps axj | head -1 && ps axj | grep test

观察这个执行结果,我们可以发现有两个相关进程,会出现第二条的原因就是执行查找test进程的命令本身也会成为一个进程,而这个进程中含test,所以会把自身也带上

如果不想要,可以在后面加上 | grep -v grep,这个-v选项我们在前面讲指令的时候是讲过的,是反向匹配的意思

ps axj | head -1 && ps axj | grep test | grep -v grep

四、通过系统调用获取进程标识符

除了上面获取进程标识符的方法外,我们还可以通过系统调用的方式来获取表示符,系统接口为getpid和getppid,我们可以通过man手册来查看这个接口

man 2 getpid

具体方法如下:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{printf("pid: %d\n", getpid());printf("ppid: %d\n", getppid());return 0;
}

多次执行这个程序,我们会发现pid一直在变化,而ppid一直不变,也就是说子进程编号一直在变化,而父进程一直没变,为什么会出现这个现象呢?

这是因为,我们在打开Linux时,会首先创建一个bash进程,形成对话框,这个bash进程也是其它所有进程的子进程,所以一般代码重新运行时,它的子进程编号会变,而父进程编号不会变


我们可以创建一个监视窗口方便观察(了解):

while :; do ps axj | head -1 ; ps axj | grep test | grep -v grep; 
echo "----------------------------"; sleep 1 ; done

五、通过系统调用创建进程——初识fork

我们可以通过fork手动创建进程,我们可以通过man手册查看一下fork

man fork

我们先来看下面的一个小程序:

#include<stdio.h>
#include<sys/types.h>
#include<unistd.h>int main()
{printf("before test");fork();printf("after test");return 0;
}

运行结果:

我们注意到在fork()函数之后的第二行打印语句执行了两次,说明在fork()之后一个进程变成了两个进程

此外,fork函数还有一个重要知识就是它是有两个整形返回值的,这点与我们之前所学的C语言中的函数差别很大,因为我们之前所学的函数都是只有一个返回值,fork的两个整形返回值中,大于0代表父进程,等于0是子进程

我们下面来看这样一个程序来验证一下:

  1 #include<stdio.h>2 #include<sys/types.h>3 #include<unistd.h>4  5 int main()6 {7     pid_t id=fork();8     if(id>0)9     {10         //父进程11         printf("I am parent process, pid:%d, ppid:%d\n",getpid(),getppid());12     }13     else if(id==0)14     {15         //子进程16         printf("I am child process, pid:%d, ppid:%d\n",getpid(),getppid());17     }18     printf("hello linux\n");19     return 0;20 }

在这个函数中我们尝试将父子进程分开,并且在最后有一个公共代码区,执行结果:

我们可以看到子进程的ppid就是父进程的pid,所以也印证了它们的父子关系,而且最后一个打印代码父子进程都执行了

相信不少同学对上面的问题已经有了很大的疑惑了,比如fork为什么要给子进程返回0,给父进程返回子进程pid呢?其实这就是为了区分父子进程,让不同的执行流执行不同的代码

一般而言fork之后的代码是共享的,这也就是为什么上面的  "hello linux"  打印了两遍的原因,因为父子进程都执行了它,那么如果此时子进程对共享数据进行操作了,我们就需要对额外操作的数据开辟新空间,这就是写时拷贝,这我们会在后面详细讲解

至于为何pid_t id中的id可以取两个值,这也需要我们后面讲到进程空间地址的问题时再提,现在只需要也简单地理解为写时拷贝就可以了

六、总结

以上就是今天讲解的进程的基础内容,篇幅较长,文字较多,相信认真看完的你会有所收获,后面我们就将开启进程知识的深度讲解


感谢各位大佬观看,创作不易,还请各位大佬点赞支持!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/11942.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

Java项目实战II基于微信小程序的订餐系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导 一、前言 随着移动互联网技术的飞速发展&#xff0…

触想染织厂MES产线终端工位机,打造数字化高效车间

一、行业发展背景 在纺织细分领域中&#xff0c;印染行业一直是整个产业链的效率短板&#xff0c;因其涉及染色、定型及后整理加工等多个复杂工艺、上百个参数变量&#xff0c;质量波动较大&#xff0c;依赖个人经验和手工操作&#xff0c;常常陷入高成本、低效率发展困境。 △…

CSS查缺补漏 two

11.6~11.11查缺补漏 一、熟记1.结构伪类选择器2.伪元素选择器3.盒子模型4.居中对齐&#xff08;重中之重&#xff01;&#xff01;&#xff01;&#xff09;5.清除默认样式6.元素溢出&#xff08;滚动条&#xff09;7.行内元素 – 内外边距问题8.圆角9 .盒子阴影&#xff08;拓…

Taro React-Native IOS 打包发布

http网络请求不到 配置 fix react-native facebook::flipper::SocketCertificateProvider‘ (aka ‘int‘) is not a function or func_rn运行debug提示flipper-CSDN博客 Xcode 15&#xff08;iOS17&#xff09;编译适配报错_no template named function in namespace std-CS…

本地搭建你的私有网盘:在Ubuntu上使用Portainer CE安装NextCloud

文章目录 前言1. 在PortainerCE中创建NextCloud容器2. 公网远程访问本地NextCloud容器2.1 内网穿透工具安装3.2 创建远程连接公网地址 3. 固定NextCloud私有云盘公网地址 前言 本篇文章介绍如何在本地使用Portainer CE可视化图形界面创建NextCloud私有网盘容器&#xff0c;并结…

超好用shell脚本NuShell mac安装

利用管道控制任意系统 Nu 可以在 Linux、macOS 和 Windows 上运行。一次学习&#xff0c;处处可用。 一切皆数据 Nu 管道使用结构化数据&#xff0c;你可以用同样的方式安全地选择&#xff0c;过滤和排序。停止解析字符串&#xff0c;开始解决问题。 强大的插件系统 具备强…

游戏引擎中LOD渲染技术

一.LOD(Level Of Detail) 为了降低GPU渲染压力,根据摄像机距离模型距离将面数较高的模型替换为面数较低的模型. LOD LOD0(distance<10) LOD1(distance<20) LOD2(distance<30) 故通常引擎中MetaMesh是由一个或多个LOD模型构成. MetaMesh mesh mesh.lod1 mesh.lod…

web前端动画按钮(附源代码)

效果图 源代码 HTML部分 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> …

昇思大模型平台打卡体验活动:项目5基于MindSpore实现Transformer机器翻译

首先仍然是先登录大模型体验平台 https://xihe.mindspore.cn/my/clouddev 启动&#xff01;&#xff01; 进入环境之后&#xff0c;即可开始运行notebook&#xff0c; Transformer 模型与实现 Transformer 是一种由 Vaswani 等人在 2017 年提出的神经网络结构&#xff08;论文…

‌关于人工智能(AI)的发展现状和未来趋势的详细分析!

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日将继续分享关于‌人工智能&#xff08;AI&#x…

提高排名的有效策略与实践指南

内容概要 在现代数字化时代&#xff0c;提高排名不仅是企业营销的关键&#xff0c;更是提升品牌知名度和客户粘性的有效途径。为了更好地理解这一主题&#xff0c;我们从多个方面进行详细分析。首先&#xff0c;明确"排名"的基本概念是非常重要的&#xff0c;它通常…

【Linux】动静态库

目录 1、制作静态库 2、站在使用者角度使用库 3、制作动态库 4、动态库是怎么被加载的 1、制作静态库 之前对动静态库的认识&#xff1a; libXXX.a-----静态库 静态链接&#xff1a;将库当中的代码拷贝到最终的可执行程序里&#xff0c;也就是&#xff0c;自己的源代码会变成…

AI绘画到底怎么画,才能出好图!一文详解

前言 在当今数字化的时代&#xff0c;AI 绘画以其强大的创造力和便捷性&#xff0c;成为了众多艺术爱好者和创作者的新宠。无论是专业画家想要拓展创作思路&#xff0c;还是业余爱好者渴望展现自己的创意&#xff0c;AI 绘画都提供了无限的可能。那么&#xff0c;究竟如何才能…

【React】深入理解 JSX语法

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 深入理解 JSX语法1. JSX 简介2. JSX 的基本语法2.1 基本结构2.2 与普通 JavaScr…

Kafka-Eagle 监控 搭建

Kafka-Eagle 框架可以监控 Kafka 集群的整体运行情况&#xff0c;在生产环境中经常使用。 在生产过程中&#xff0c;想创建topic、查看所有topic、想查看某个topic 想查看分区等&#xff0c;都需要写命令&#xff0c;能不能有一个图形化的界面&#xff0c;让我们操作呢&#x…

5位机械工程师如何共享一台工作站的算力?

在现代化的工程领域中&#xff0c;算力已成为推动创新与技术进步的关键因素之一。对于机械工程师而言&#xff0c;强大的计算资源意味着能够更快地进行复杂设计、模拟分析以及优化工作&#xff0c;从而明显提升工作效率与项目质量。然而&#xff0c;资源总是有限的&#xff0c;…

显示器接口种类 | 附图片

显示器接口类型主要包括VGA、DVI、HDMI、DP和USB Type-C等。 VGA、DVI、HDMI、DP和USB Type-C 1. 观察 VGA接口:15针 DP接口&#xff1a;在DP接口旁&#xff0c;都有一个“D”型的标志。 电脑主机&#xff1a;DP(D) 显示器&#xff1a;VGA(15针) Ref https://cloud.tenc…

C++常见概念问题(3)

C常见概念问题&#xff08;3&#xff09; 1. 构造函数的初始化顺序 基类构造函数&#xff1a;在派生类的构造函数中&#xff0c;基类的构造函数在派生类构造函数体执行之前调用。 成员变量初始化&#xff1a;类中的成员变量会按照其在类中声明的顺序进行初始化&#xff0c;而…

Tofu识别跟踪产品视频输入接口汇总

网络视频输入 视频输入默认支持网络RTSP协议视频&#xff0c;分辨率支持480P&#xff0c;720P&#xff0c;1080P&#xff0c;1440P等格式。 目前仅Tofu3支持1440P格式的400万像素视频&#xff0c;可通过升级包支持&#xff0c;400万像素分辨率目前仅支持25601440。 并行数字视…

【WRF工具】WRF 模型输出可视化工具 RIP4

【WRF工具】WRF 模型输出可视化工具 RIP4 1 可视化工具 RIP4 概述1.1 RIP4 的典型工作流程 2 安装 RIP42.1 下载 RIP42.2 编译 RIP4 3 运行 RIP43.1 准备输入文件3.2 运行 RIP 数据预处理程序&#xff08;ripdp_wrfarw&#xff09;3.3 运行 RIP 绘图程序&#xff08;rip&#x…