算法.图论-并查集

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板
    • 4. 并查集习题
      • 4.1 情侣牵手
      • 4.2 相似字符串组

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的

private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];//find方法(路径压缩的迭代实现)private static int find1(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 1000001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz) {cnt = sz;for (int i = 0; i <= cnt; i++) {father[i] = i;size[i] = 1;}}private static int find(int n) {//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while (father[n] != n) {stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while (capacity > 0) {father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if (fa != fb) {if (size[fa] >= size[fb]) {father[fb] = fa;size[fa] += size[fb];} else {father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for (int i = 0; i < m; i++) {in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if (op == 1) {out.println(isSameSet(n1, n2) ? "Yes" : "No");} else {union(n1, n2);}}}out.flush();out.close();br.close();}
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz){cnt = sz;for(int i = 0; i <= cnt; i++){father[i] = i;size[i] = 1;}}private static int find(int n){//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while(father[n] != n){stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while(capacity > 0){father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if(fa != fb){if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException{BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while(in.nextToken() != StreamTokenizer.TT_EOF){int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for(int i = 0; i < m; i++){in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if(op == 2){out.println(isSameSet(n1, n2) ? "Y" : "N");}else{union(n1, n2);}}}out.flush();out.close();br.close();}
}

4. 并查集习题

4.1 情侣牵手

leetcode765.情侣牵手题目链接
在这里插入图片描述

//本题的前置知识可能是置换环(这一题的并查集的思路尤其不好想)
class Solution {
//核心点的分析就是如果一个集合里面有k对情侣, 那么我们至少需要交换 k - 1 次private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];private static int sets = 0;//初始化并查集private static void build(int n){sets = n;for (int i = 0; i < n; i++) {father[i] = i;size[i] = 1;}}//find方法(路径压缩的实现)//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}public int minSwapsCouples(int[] row) {int cpN = row.length / 2;build(cpN);for(int i = 0; i < row.length; i += 2){union(row[i] / 2, row[i + 1] / 2);}return cpN - sets;}
}

4.2 相似字符串组

leetcode839.相似字符串组
在这里插入图片描述

//简单的并查集的应用
class Solution {private static final int MAXN = 301;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int sets = 0;//初始化并查集的方式private static void build(int n){sets = n;for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}}//find方法private static int find(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//isSameSet方法 private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){size[fa] += size[fb];father[fb] = fa;}else{size[fb] += size[fa];father[fa] = fb;}}}public int numSimilarGroups(String[] strs) {int n = strs.length;int m = strs[0].length();build(n);for(int i = 0; i < n; i++){for(int j = i + 1; j < n; j++){if (find(i) != find(j)) {int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (strs[i].charAt(k) != strs[j].charAt(k)) {diff++;}}if (diff == 0 || diff == 2) {union(i, j);}}}}return sets;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147628.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

突破距离限制:大文件跨境传输的高效策略揭秘

目前越来越多的人认识到大数据的重要性&#xff0c;有人将大数据比作“石油”&#xff0c;未来的某一天石油资源可能会面临枯竭&#xff0c;但是大数据中蕴藏的资源却不会。海外市场对于数据驱动的产品和服务的需求不断增加&#xff0c;越来越多的企业寻求更深度的跨国业务及合…

国内人工智能AI头部公司32家(包括详细技术、特点和综合实力)

国内AI头部公司前100家及其详细技术、特点和综合实力&#xff0c;基于当前行业认知和市场表现选取的一些代表性企业。 1. 百度&#xff08;Baidu&#xff09; 技术&#xff1a;百度在人工智能AI领域拥有深厚的技术积累&#xff0c;包括自然语言处理、计算机视觉、深度学习等核…

【文心智能体】 旅游手绘手帐 开发分享 零代码 手绘风景 记录行程和心情 旅游攻略

旅游手绘手帐&#xff0c;点击文心智能体平台AgentBuilder | 想象即现实 (baidu.com) 背景 这个智能体是一个零代码智能体&#xff08;文心智能体平台现主推零代码&#xff0c;低代码将于10月8日低代码下架迁移&#xff09;&#xff0c;同时它已公开配置详情&#xff0c;感兴趣…

使用centos7搭建wiki论坛,使用nginx网站来搭建wiki负载均衡,反向代理。

1.安装一个wget&#xff0c;进入目录opt下 #安装wget yum -y install wget#进入目录/opt/下面 cd /opt/2.获取 mysql8.0 rpm包,安装mysql8.0,安装mysql-server&#xff0c;yum会自动下载所需安装及依赖包. #获取 mysql8.0 rpm包 wget https://dev.mysql.com/get/mysql80-comm…

【文化课学习笔记】【物理】电场

【物理】电场 前置知识 绝缘体&#xff1a;本质是物体内部电荷无法自由移动。 导体&#xff1a;本质是物体内部电荷可以自由移动。 电荷的移动&#xff1a;导体内部能够发生自由移动的电荷只有负电荷。 显电性&#xff1a;显示的电性&#xff0c;是内部的正负电荷中和之后的结果…

NLP 文本分类任务核心梳理

解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据&#xff0c;核心解决方案&#xff1a; 自己构造训练样本 数据增强&#xff0c;如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…

《2024中国AI大模型产业图谱2.0版》重磅发布

‍ 数据猿出品 本次“数据猿2024年度三大媒体策划活动——《2024中国AI大模型产业图谱3.0版》”正式发布。下一次版本迭代将于2024年12月底发布2024年3.0版&#xff0c;敬请期待&#xff0c;欢迎报名。 大数据产业创新服务媒体 ——聚焦数据 改变商业 随着科技的飞速发展&…

7.C++程序中的基本数据类型-数据类型之间的转换

在C中&#xff0c;类型转换是将一个数据类型转为另外一个数据类型&#xff0c;其转换过程比较复杂&#xff0c;目前只讨论基本数据类型之间的转换。 类型转换分为两部分&#xff1a;隐式转换和显示转换 隐式转换又称为自动转换&#xff0c;显示转换又称为强制转换。 隐式转换…

文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于台区剩余电流关联性分析的接线错误漏电用户识别方法》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

基于软件项目开发流程的软件综合实训室解决方案

一、引言 1.1 软件实训室的重要性 软件实训室作为高等教育和职业教育中的不可或缺组成部分&#xff0c;对于培养学生的实践能力和创新思维发挥着重要作用。随着信息技术的快速发展&#xff0c;软件行业对于高素质技术人才的需求日益增长。实训室提供了一个模拟真实工作环境的…

视频监控平台AS-V1000的目录管理和区域管理:实现现有监控视频资源的行政区域划分和管理

目录 一&#xff0e;行政区划相关概念 1.1 视频监控系统中的行政区划 1.2 国标GB28181中行政区划目录定义 二&#xff0e;视频资源管理平台介绍 2.1 AS-V1000视频平台介绍 2.2 平台相关服务的说明 三&#xff0e;区域管理功能介绍 3.1区域管理功能结构树 3.1.1区域管理…

面试经典算法题53-搜索插入位置

面试经典算法题53-搜索插入位置 公众号&#xff1a;阿Q技术站 LeetCode.35 问题描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为…

探索MemGPT:AI界的新宠儿

文章目录 探索MemGPT&#xff1a;AI界的新宠儿1. 背景介绍2. MemGPT是什么&#xff1f;3. 如何安装MemGPT&#xff1f;4. 简单的库函数使用方法5. 场景应用场景一&#xff1a;创建持久聊天机器人场景二&#xff1a;文档分析场景三&#xff1a;多会话聊天互动 6. 常见Bug及解决方…

Nginx笔记-使用alias映射磁盘目录(nginx文件下载)

Nginx 配置中&#xff0c;alias 关键字用于指定一个路径作为请求的别名。当客户端请求该别名路径下的资源时&#xff0c;Nginx会将其映射到实际的文件系统路径进行访问。这种方式可以用来隐藏实际文件系统路径&#xff0c;或者将客户端请求重新定向到另一个路径。 如下例子&am…

【幸运数 / A】

题目 代码 #include <bits/stdc.h> using namespace std; bool check(int num) {int cnt 0;int x num;while (x){cnt;x / 10;}if (cnt % 2)return false;cnt / 2;int sum 0, half 0, i 0;x num;while (x){i;if (i < cnt)half x % 10;sum x % 10;x / 10;}if (…

LeetCode 热题 100 回顾17

干货分享&#xff0c;感谢您的阅读&#xff01;原文见&#xff1a;LeetCode 热题 100 回顾_力code热题100-CSDN博客 一、哈希部分 1.两数之和 &#xff08;简单&#xff09; 题目描述 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标…

vue3 + ts + pnpm:nprogress / 页面顶部进度条

一、简介 nprogress 是一个轻量级的进度条库&#xff0c;它适用于在网页上添加顶部进度条&#xff0c;用于指示页面加载进度或任何长时间的运行过程。这个库非常流行&#xff0c;因为它易于使用且视觉效果很好。 二、安装 pnpm add nprogress 三、在使用的页面引入 / src/v…

计算机毕业设计springboot+vue家居全屋家具定制系统

目录 功能和技术介绍系统实现截图开发核心技术介绍&#xff1a;使用说明开发步骤编译运行核心代码部分展示需求分析系统设计软件测试详细视频演示源码获取 功能和技术介绍 本项目包含程序源码和MySql脚本和文档,idea开发,支持Eclipse。使用vue的本质是SpringFramework【IoC&am…

深度学习——D2(数据操作)

N维数组 创建数组 访问元素 一列: [ : , 1 ] 反向累积、正向累积&#xff08;自动求导&#xff09; 梯度 梯度&#xff08;Gradient&#xff09;是微积分中的一个重要概念&#xff0c;主要用于描述一个函数在某个区域内的变化情况。以下是对梯度的详细解释&#xff1a; 一…

Vue(15)——组合式API②

生命周期函数 选项式组合式beforeCreate/createdsetupbeforeMountonBeforeMount mountedonMounedbeforeUpdateonBeforeUpdateupdatedonUpdatedbeforeUnmountonBeforeUnmountunmountedonUnmounted 父子通信 父传子基本思想&#xff1a; 父组件中给子组件绑定属性…