PyTorch使用------自动微分模块

目录

🍔 梯度基本计算

1.1 单标量梯度的计算

1.2 单向量梯度的计算

1.3 多标量梯度计算

1.4 多向量梯度计算

1.5 运行结果💯

🍔 控制梯度计算

2.1 控制不计算梯度

2.2 注意: 累计梯度

2.3 梯度下降优化最优解

2.4 运行结果💯

🍔 梯度计算注意

3.1 detach 函数用法

3.2 detach 前后张量共享内存

3.3 运行结果💯

🍔 小节


学习目标

🍀 掌握梯度计算


自动微分(Autograd)模块对张量做了进一步的封装,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,在神经网络的反向传播过程中,Autograd 模块基于正向计算的结果对当前的参数进行微分计算,从而实现网络权重参数的更新。

🍔 梯度基本计算

我们使用 backward 方法、grad 属性来实现梯度的计算和访问.

import torch

1.1 单标量梯度的计算

   

 # y = x**2 + 20def test01():# 定义需要求导的张量# 张量的值类型必须是浮点类型x = torch.tensor(10, requires_grad=True, dtype=torch.float64)# 变量经过中间运算f = x ** 2 + 20# 自动微分f.backward()# 打印 x 变量的梯度# backward 函数计算的梯度值会存储在张量的 grad 变量中print(x.grad)


1.2 单向量梯度的计算

# y = x**2 + 20
def test02():# 定义需要求导张量x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)# 变量经过中间计算f1 = x ** 2 + 20# 注意:# 由于求导的结果必须是标量# 而 f 的结果是: tensor([120., 420.])# 所以, 不能直接自动微分# 需要将结果计算为标量才能进行计算f2 = f1.mean()  # f2 = 1/2 * x# 自动微分f2.backward()# 打印 x 变量的梯度print(x.grad)

1.3 多标量梯度计算

# y = x1 ** 2 + x2 ** 2 + x1*x2
def test03():# 定义需要计算梯度的张量x1 = torch.tensor(10, requires_grad=True, dtype=torch.float64)x2 = torch.tensor(20, requires_grad=True, dtype=torch.float64)# 经过中间的计算y = x1**2 + x2**2 + x1*x2# 将输出结果变为标量y = y.sum()# 自动微分y.backward()# 打印两个变量的梯度print(x1.grad, x2.grad)


1.4 多向量梯度计算

def test04():# 定义需要计算梯度的张量x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)x2 = torch.tensor([30, 40], requires_grad=True, dtype=torch.float64)# 经过中间的计算y = x1 ** 2 + x2 ** 2 + x1 * x2print(y)# 将输出结果变为标量y = y.sum()# 自动微分y.backward()# 打印两个变量的梯度print(x1.grad, x2.grad)if __name__ == '__main__':test04()

1.5 运行结果💯

tensor(20., dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor(40., dtype=torch.float64) tensor(50., dtype=torch.float64)
tensor([1300., 2800.], dtype=torch.float64, grad_fn=<AddBackward0>)
tensor([50., 80.], dtype=torch.float64) tensor([ 70., 100.], dtype=torch.float64)

🍔 控制梯度计算

我们可以通过一些方法使得在 requires_grad=True 的张量在某些时候计算不进行梯度计算。

import torch

2.1 控制不计算梯度

def test01():x = torch.tensor(10, requires_grad=True, dtype=torch.float64)print(x.requires_grad)# 第一种方式: 对代码进行装饰with torch.no_grad():y = x ** 2print(y.requires_grad)# 第二种方式: 对函数进行装饰@torch.no_grad()def my_func(x):return x ** 2print(my_func(x).requires_grad)# 第三种方式torch.set_grad_enabled(False)y = x ** 2print(y.requires_grad)


2.2 注意: 累计梯度

def test02():# 定义需要求导张量x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)for _ in range(3):f1 = x ** 2 + 20f2 = f1.mean()# 默认张量的 grad 属性会累计历史梯度值# 所以, 需要我们每次手动清理上次的梯度# 注意: 一开始梯度不存在, 需要做判断if x.grad is not None:x.grad.data.zero_()f2.backward()print(x.grad)


2.3 梯度下降优化最优解

def test03():# y = x**2x = torch.tensor(10, requires_grad=True, dtype=torch.float64)for _ in range(5000):# 正向计算f = x ** 2# 梯度清零if x.grad is not None:x.grad.data.zero_()# 反向传播计算梯度f.backward()# 更新参数x.data = x.data - 0.001 * x.gradprint('%.10f' % x.data)if __name__ == '__main__':test01()test02()test03()

2.4 运行结果💯

True
False
False
False
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)

🍔 梯度计算注意

当对设置 requires_grad=True 的张量使用 numpy 函数进行转换时, 会出现如下报错:

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

此时, 需要先使用 detach 函数将张量进行分离, 再使用 numpy 函数.

注意: detach 之后会产生一个新的张量, 新的张量作为叶子结点,并且该张量和原来的张量共享数据, 但是分离后的张量不需要计算梯度。

import torch

3.1 detach 函数用法

def test01():x = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)# Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.# print(x.numpy())  # 错误print(x.detach().numpy())  # 正确


3.2 detach 前后张量共享内存

def test02():x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)# x2 作为叶子结点x2 = x1.detach()# 两个张量的值一样: 140421811165776 140421811165776print(id(x1.data), id(x2.data))x2.data = torch.tensor([100, 200])print(x1)print(x2)# x2 不会自动计算梯度: Falseprint(x2.requires_grad)if __name__ == '__main__':test01()test02()

3.3 运行结果💯

10. 20.]
140495634222288 140495634222288
tensor([10., 20.], dtype=torch.float64, requires_grad=True)
tensor([100, 200])
False

🍔 小节

本小节主要讲解了 PyTorch 中非常重要的自动微分模块的使用和理解。我们对需要计算梯度的张量需要设置 requires_grad=True 属性,并且需要注意的是梯度是累计的,在每次计算梯度前需要先进行梯度清零。

 

😀 小言在此感谢大家的支持😀 

顺便问一下大佬们,最擅长使用的编程语言是什么呢~

欢迎评论区讨论哦~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/144866.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

dgl库安装

此篇文章继续上一篇pytorch已经安装成功的情况 &#xff08;python3.9&#xff0c;pytorch2.2.2&#xff0c;cuda11.8&#xff09; 上一篇pytorch安装教学链接 选择与之匹配的版本 输入下方代码进行测试 import dgl.data dataset dgl.data.CoraGraphDataset() print(‘Numb…

契约锁与您相约2024新疆数字经济创新大会暨新疆数字丝路博览会

9月20日&#xff0c;由新疆数字经济联合会主办&#xff0c;多家行业协会及企业共同承办的“2024(第一届)新疆数字经济创新发展大会暨新疆数字丝路博览会”在新疆国际会展中心盛大开幕&#xff0c;活动期间&#xff0c;契约锁作为电子签章行业领先的服务商携数字可信系列产品亮相…

小程序服务零工市场

零工市场小程序有着信息发布、岗位匹配、线上接单、零工人员保障险参保、技能培训、费用结算、完工确认、服务评价、纠纷调解等功能&#xff0c;为求职者和雇主搭建一座高效、便捷、精准的对接桥梁。 用工单位通过小程序的“雇主找人”&#xff0c;发布招聘信息&#xff0c;找到…

本地生活商城开发搭建 同城O2O线上线下推广

同城本地化商城目前如火如荼&#xff0c;不少朋友咨询本地生活同城平台怎么开发&#xff0c;今天商淘云与大家分享同城O2O线上商城的设计和开发。 本地生活商城一般会涉及到区域以及频道类&#xff0c;一般下单需要支持用户定位、商家定位&#xff0c;这样利于用户可以快速找到…

一文解读OLAP的工具和应用软件

OLAP&#xff08;OnlineAnalyticalProcessing&#xff09;是一种用于快速分析大规模、多维度数据的方法。OLAP工具和应用软件则是帮助人们进行OLAP分析的重要工具。本文将介绍几种常见的OLAP工具和应用软件&#xff0c;并探讨它们在数据分析中的作用。 一 OLAP工具的分类 在选…

巴菲特的长期投资策略:新投资者实现财务自由的启示

在投资界&#xff0c;沃伦巴菲特的名字几乎无人不晓。作为伯克希尔哈撒韦公司的董事长和首席执行官&#xff0c;巴菲特以其卓越的投资智慧和长期价值增长策略&#xff0c;成为了全球投资者的偶像。巴菲特的成功不仅仅是因为他的财富&#xff0c;更在于他对投资的深刻理解和对财…

Centos 7 搭建Samba

笔记&#xff1a; 环境&#xff1a;VMware Centos 7&#xff08;网络请选择桥接模式&#xff0c;不要用NAT&#xff09; 遇到一个问题就是yum 安装404&#xff0c;解决办法在下面&#xff08;没有遇到可以无视这句话&#xff09; # 安装Samba软件 yum -y install samba# 创建…

使用MinIO+PicGo在服务器搭建图床

创建minio目录 用于存放Minio可执行文件 mkdir /usr/local/minio下载minio # 进入到/usr/local/minio cd /usr/local/minio # 执行下载 wget https://dl.min.io/server/minio/release/linux-amd64/minio # 授权下载文件为可执行文件 chmod x minio创建存储目录 # 新建data存…

最短路: Djikstra

最短路: Djikstra 适用于边权非负 如果存在负边权, 则当前距离dist最小的点, 不一定就是实际离源点最近的点,可能有负边导致其它路径离当前点更近 如下图所示, 如果存在负边, y点距离S点最近, 所以选中y点进行松弛, 贪心思想 当边权非负,离起点S最近的点,不能被更新, 如果在…

相亲交友系统 现代爱情的导航仪

在这个数字化的时代&#xff0c;人们的生活方式发生了翻天覆地的变化&#xff0c;其中最显著的变化之一便是交友方式的转变。编辑h17711347205随着社会节奏的加快&#xff0c;越来越多的人选择通过相亲交友系统来寻找人生伴侣。相亲交友系统不仅简化了传统的交友流程&#xff0…

【版本更新】TDuckX表单1.9版来了

hi&#xff0c;朋友们大家好&#xff0c;填鸭表单TDuckX迎来了9月的版本更新&#xff1b;接下来让我们看看本次更新的详细内容吧。 1.新增360评估(Bate版本) 360度评估反馈&#xff08;360Feedback&#xff09;&#xff0c;又称“360度考核法”或“全方位考核法”&#xff0c…

人工智能在肿瘤浸润淋巴细胞研究中的最新进展|文献速递·24-09-20

小罗碎碎念 文献速递&#xff5c;目录 一、胆道癌治疗应答的新型AI生物标志物&#xff1a;肿瘤浸润性淋巴细胞的空间分布 补充文献&#xff1a;22年发表于JCO的一篇类似文献 二、生物标志物在肝细胞癌管理中的作用&#xff1a;从发现到临床应用 三、肿瘤样本中免疫细胞浸润水…

pdb文件查看工具pdbripper.exe

下载地址:https://www.bing.com/ck/a?!&&p249322afbfbc575bJmltdHM9MTcyMTM0NzIwMCZpZ3VpZD0yMjBkODE2MC1hYjNhLTZkYTMtMGVlYi05NWQ5YWE3OTZjOGEmaW5zaWQ9NTE4Mg&ptn3&ver2&hsh3&fclid220d8160-ab3a-6da3-0eeb-95d9aa796c8a&psqpdbripper.exe&…

[Linux]:信号(上)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;Linux学习 贝蒂的主页&#xff1a;Betty’s blog 1. 信号的引入 1.1 信号的概念 在Linux系统中&#xff0c;信号&#xff08;…

2024年及未来:构筑防御通胀的堡垒,保护您的投资

随着全球经济的波动和不确定性&#xff0c;通货膨胀已成为投资者不得不面对的现实问题。通胀会侵蚀货币的购买力&#xff0c;从而影响投资的实际回报。因此&#xff0c;制定有效的策略来保护投资免受通胀影响&#xff0c;对于确保资产的长期增值至关重要。在2024年及未来&#…

着色器ShaderMask

说明 实现一个渐变进度条&#xff0c;要求&#xff1a; 颜色渐变的过程是循序渐进的&#xff0c;而不是看起来像是将渐变条逐渐拉长了。 效果 源码 // 渐变进度条Stack(children: [// 背景色板Container(width: 300,height: 8,decoration: BoxDecoration(borderRadius: Bord…

Vue2中路由的介绍和使用

一.路由的基本概念 一说路由&#xff0c;大家首先想到的可能是路由器&#xff0c;路由器的原理就是给连接的设备一个IP地址&#xff0c;通过IP地址来映射到设备&#xff0c;实现连接&#xff0c;本质上是一种映射关系。 在vue2中就是路径与组件间的映射。 路由是使用vue2制作…

基于SpringBoot+Vue的“课件通”中小学教学课件共享平台

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的…

昇腾大模型推理解决方案MindIE部署

MindIE大模型推理套件 MindIE&#xff08;Mind Inference Engine&#xff0c;昇腾推理引擎&#xff09;是华为公司针对AI全场景推出的整体解决方案&#xff0c;包含丰富的推理加速套件。通过开放各层次AI能力&#xff0c;支撑客户多样化的AI业务需求&#xff0c;使能百模千态&a…

4G 网络下资源加载失败?一次运营商封禁 IP 的案例分享

在工作中&#xff0c;网络问题是不可避免的挑战之一。最近&#xff0c;我们在项目中遇到了一起网络资源加载异常的问题&#xff1a;某同事在使用 4G 网络连接公司 VPN 时&#xff0c;云服务的前端资源居然无法加载&#xff01;通过一系列的排查和分析&#xff0c;我们发现问题的…