Acwing Hash表

哈希表的作用:把一个比较大的空间,通过一个函数映射到一个比较小的空间
一般做哈希运算时,取一个质数作为模,会使得冲突的概率降低。
哈希表的冲突解决方法:

  • 拉链法
  • 开放寻址法

下面详细介绍这两种方法的原理及其实现:

1.拉链法

创建一个数组h[],插入一个值时通过哈希函数映射到数组对应位置,每个位置维护一个链表,映射到相同位置加入当前链表中。
数组h[i]类似于链表的头指针,存储的是其下链表的第一个结点x的数组下标**,而不是结点的值x,取值范围0~N,所以可以让数组h的默认值为-1以此判断该位置下是否为空

  • 插入操作:采用头插法,根据哈希函数计算哈希值,每次冲突的值,插入到链表的第一个位置;
  • 查询操作:根据哈希值找到对应头指针即对应链表,再对链表遍历判断;
  • 删除操作:删除操作并不是真正的删除该元素,而是设置一个标记值,来表示该位置的值已被删除(用得少)。
    板子:
const int N = 100003; // 大于10^5的最小质数,作为哈希表的大小int h[N], e[N], ne[N], idx = 0; 
// h[] 用于存储每个哈希值对应的链表头结点
// e[] 用于存储插入的值
// ne[] 用于存储每个元素的下一个节点的索引
// idx 是当前插入元素的索引// 插入操作,使用拉链法实现
void insert(int x){int k = (x % N + N) % N; // 计算哈希值,处理负数时确保结果为正数e[idx] = x;              // 将x存入数组e,idx是当前存储的索引ne[idx] = h[k];          // 将当前元素的下一个节点设置为链表的第一个节点h[k] = idx++;            // 将哈希表h[k]指向当前元素,并更新idx
}// 查找操作,查找元素x是否存在
bool find(int x){int k = (x % N + N) % N; // 计算哈希值for(int i = h[k]; i != -1; i = ne[i]){ // 遍历哈希表k对应的链表if(e[i] == x) return true;         // 如果找到,返回true}return false;                          // 没找到,返回false
}

哈希表常用取余法,代码实现找一个大于等于N且最小的质数:

int get_Prime(int N){for(int i = N;;i++){bool flag = true;for(int j = 2; j * j <= i;j ++){if(i % j== 0){flag = false;break;}}if(flag){return i;break;}}
}

2.开放寻址法:

开放寻址法:当冲突发生时,使用某种探测算法(得出一个偏移量)在散列表中寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到。探测法有线性探测法、平方探测法、双散列法、伪随机序列。这里直接使用线性探测法,即冲突则自增1。

数组h[]存储的时具体的节点值x,而x的取值范围是 − 1 0 9 − − 1 0 9 -10^9 --10^9 109109.故应该让数组x的默认值不在x的取值范围内(定义null = 0x3f3f3f3f),这样才好判断h[k[位置上是否为空(注意和拉链法区分)

  • 查找和查询操作合为一个find()函数:首先根据哈希函数计算的哈希值查找当前元素是否在初始位置。若该位置为空,则在这个位置插入该元素;若不为空且与该元素不等,则向后继续查找,直到找到该元素或有空位置则插入该元素。最后返回该位置。

板子:

const int N = 200003, null = 0x3f3f3f3f; // N为哈希表的大小,null为标志无效值的常量
int h[N]; // 哈希表,存储元素// 开放寻址法查找函数
// 如果x在哈希表中,返回x的下标;
// 如果x不在哈希表中,返回x应该插入的位置
int find(int x) {int k = (x % N + N) % N; // 计算哈希值,处理负数使其为正while(h[k] != null && h[k] != x) { // 当位置不为空且不等于x时,进行线性探测k++; // 如果发生冲突,继续探测下一个位置if(k == N) k = 0; // 如果到达末尾,回到哈希表开头}return k; // 返回找到的插入位置或x所在的位置
}

好的,下面给出一道题目,我们采用两种方法解答:

Acwing 840. 模拟散列表
在这里插入图片描述
输入样例:

5
I 1
I 2
I 3
Q 2
Q 5

输出样例:

Yes
No

具体实现(2种):

//拉链法
#include <iostream>
#include <cstring>using namespace std;const int N = 100003; // 大于10^5的最小质数,作为哈希表的大小int h[N], e[N], ne[N], idx = 0; 
// h[] 用于存储每个哈希值对应的链表头结点
// e[] 用于存储插入的值
// ne[] 用于存储每个元素的下一个节点的索引
// idx 是当前插入元素的索引// 插入操作,使用拉链法实现
void insert(int x){int k = (x % N + N) % N; // 计算哈希值,处理负数时确保结果为正数e[idx] = x;              // 将x存入数组e,idx是当前存储的索引ne[idx] = h[k];          // 将当前元素的下一个节点设置为链表的第一个节点h[k] = idx++;            // 将哈希表h[k]指向当前元素,并更新idx
}// 查找操作,查找元素x是否存在
bool find(int x){int k = (x % N + N) % N; // 计算哈希值for(int i = h[k]; i != -1; i = ne[i]){ // 遍历哈希表k对应的链表if(e[i] == x) return true;         // 如果找到,返回true}return false;                          // 没找到,返回false
}int main(){memset(h, -1, sizeof h); // 初始化哈希表h,令所有值为-1,表示链表为空int n; // 操作数cin >> n;while(n--){ // 处理n个操作char op[2]; // 操作符int x;      // 操作的数值cin >> op >> x;if(op[0] == 'I') insert(x); // 插入操作else { // 查找操作if(find(x)) puts("Yes"); else puts("No");         }}return 0;
}
//开放寻址法
#include <iostream>
#include <cstring>using namespace std;const int N = 200003, null = 0x3f3f3f3f; // N为哈希表的大小,null为标志无效值的常量
int h[N]; // 哈希表,存储元素// 开放寻址法查找函数
// 如果x在哈希表中,返回x的下标;
// 如果x不在哈希表中,返回x应该插入的位置
int find(int x) {int k = (x % N + N) % N; // 计算哈希值,处理负数使其为正while(h[k] != null && h[k] != x) { // 当位置不为空且不等于x时,进行线性探测k++; // 如果发生冲突,继续探测下一个位置if(k == N) k = 0; // 如果到达末尾,回到哈希表开头}return k; // 返回找到的插入位置或x所在的位置
}int main() {//memset按字节赋值,int4个字节,每个字节赋值0x3f,则h默认值就为0x3f3f3f3f 即nullmemset(h, 0x3f, sizeof h); // 初始化哈希表,所有位置都标记为nullint n; // 操作次数cin >> n;while(n--) {char op[2]; // 操作类型int x; // 操作的数值cin >> op >> x;int k = find(x); // 通过find函数得到x的位置if(op[0] == 'I') h[k] = x; // 插入操作,将x放入找到的位置else {if(h[k] != null) puts("Yes"); // 如果h[k]不是null,说明x在哈希表中else puts("No"); // 否则x不在哈希表中}}return 0;
}

以上两种方法各有利弊,开放寻址法通过线性探测有效解决哈希冲突,适合负载率较低的哈希表。在实际操作中,开放寻址法避免了链表(拉链法)的额外存储开销,但在负载率高时可能会导致较多的探测,影响性能。个人倾向于开放寻址法,只需要开一个数组~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/144786.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

自制网络连接工具(支持tcpudp,客户端服务端)

自制网络连接工具&#xff08;支持tcp/udp,客户端/服务端&#xff09; 将网络连接工具制作成共享库 network.h #ifndef NETWORK_H #define NETWORK_H#include<netinet/in.h> #include<sys/socket.h> #include<stdbool.h> typedef struct Network {int type…

JAVA基础:包装类,BigInteger , BigDecimal

1 包装类 java是一种面向对象的编程语言 对象都是由类产生的。 8种基本类型对java面向对象的特性有所破坏 jdk就提供了8种基本类型所对应的类的表示&#xff0c;称为&#xff1a;包装类 理论上来讲&#xff1a;类属性使用包装类定义&#xff0c;方法中的局部变量使用基本类型…

javamail发邮件:配置SMTP发送邮件的步骤?

javamail发邮件的教程指南&#xff1f;怎么用JavaMail发送邮件&#xff1f; JavaMail API 是 Java 平台上用于发送和接收电子邮件的标准 API&#xff0c;它提供了一套丰富的类和方法&#xff0c;使得开发者能够轻松地实现邮件发送功能。AokSend将详细介绍如何使用 JavaMail AP…

基于atlas环境下YOLOV7的睡岗识别

做到这里&#xff0c;其实只是想探索下新的检测框架、探索下atlas下ACL的推理方式。整个过程持续了3-4周把&#xff0c;回顾一下&#xff0c;感觉还是需要一些技巧才能拿下&#xff0c;如果没有任何经验的是断难搞定此代码的。主要基于华为的官方例子&#xff0c;里面修改了原始…

峟思科普:溢流坝是什么?溢流坝承载着哪些作用

水坝系统中的一项关键组成部分——溢洪结构&#xff0c;又常被称作溢洪道&#xff0c;其独特功能在于精准调控水库水位&#xff0c;确保水坝安全。当水库蓄水量超过预设阈值&#xff0c;该结构能够引导多余水流平稳穿越坝体&#xff0c;注入下游河床。此过程中&#xff0c;坝前…

Snapchat API 访问:Objective-C 实现示例

Snapchat 是一个流行的社交媒体平台&#xff0c;它允许用户发送和接收短暂存在的图片和视频。对于开发者来说&#xff0c;访问 Snapchat API 可以为应用程序添加独特的社交功能。本文将介绍如何在 Objective-C 中实现对 Snapchat API 的访问&#xff0c;并提供一个详细的代码示…

uni-app页面调用接口和路由(四)

文章目录 一、路由二、页面调用接口二、路由跳转1.uni.navigateTo(OBJECT)2.uni.redirectTo(OBJECT)3.uni.reLaunch(OBJECT)4.uni.switchTab(OBJECT)5.uni.navigateBack(OBJECT) 总结 一、路由 路由配置 uni-app页面路由为框架统一管理&#xff0c;开发者需要在pages.json里配…

yolo自动化项目实例解析(四)ui页面整理1 (1.85)

我们在上一章整理main.py 的if __name__ __main__: 内容还留下面这一段&#xff0c; from PyQt5.QtWidgets import *from lanrenauto.moni.moni import *from PyQt5.QtGui import *app QApplication(sys.argv) # 初始化Qt应用ratio screen_width / 2560 # 分辨率比例# 设…

centos 安装VNC,实现远程连接

centos 安装VNC&#xff0c;实现远程连接 VNC(Virtual Network Computing)是一种远程控制软件&#xff0c;可以实现通过网络远程连接计算机的图形界面。 服务器安装VNC服务 yum install -y tigervnc-server*启动VNC服务&#xff0c;过程中需要输入连接密码 vncserver :1查看…

全国网安众测招募计划启动啦,欢迎加入~

在数字化时代&#xff0c;网络安全已成为维护社会稳定、促进经济发展的基石。为了积极响应国家关于加强网络安全工作的号召&#xff0c;确保某区域关键信息系统的稳固运行&#xff0c;我们特此启动一项网络安全众测活动。该活动旨在通过汇聚业界有经验的网络安全攻防人才&#…

RetrievalAttention——提高 LLM 处理长上下文的效率

概述 论文地址&#xff1a;https://arxiv.org/abs/2409.10516 本文的研究背景主要是为了解决 "具有长语境的大型语言模型&#xff08;LLM&#xff09;"问题。基于变换器的 LLM 被广泛应用于各个领域&#xff0c;但在处理长上下文时&#xff0c;其计算成本非常高。特…

电脑USB端口禁止软件有哪些?什么软件能指定USB端口禁用?分享四款好用软件!

想象一下&#xff0c;你正准备在办公桌上插入U盘&#xff0c;打算快速拷贝文件&#xff0c;突然系统蹦出一个警告&#xff1a;“这个USB端口已被禁用&#xff01;” 是不是感觉好像被一双隐形的手制止了&#xff1f; 其实&#xff0c;这双“隐形的手”就是专门为企业安全设计…

visionpro脚本

visionproToolBlock的脚本的优先级优于工具连线的优先级&#xff0c;一般是照着脚本的执行顺序进行执行对应的工具&#xff0c;最常用的是C#的高级脚本&#xff0c;C#的脚本如下分为5部分。 第一部分&#xff1a;主要是一些库的引用&#xff0c;对于有些类型不知道库的时候&…

vue2中字符串动态拼接字段给到接口

【设计初衷是用户可根据给定的字段进行准确描述】 实现功能&#xff1a; 1. 文本域内容串动态配置字段&#xff0c;以$ {英文}拼接格式给到接口。 &#xff08;传参如&#xff1a;$ {heat_status_code}正常&#xff0c;$ {wdy_temp}也正常&#xff01;&#xff09; 2. 编辑时根…

Instagram全面升级“青少年账号”保护措施,除了信息分类过滤,还应从根源加强内容审核

在持续多年的监管和诉讼压力下&#xff0c;作为社交网站的巨头&#xff0c;Instagram落实了“最严格的青少年用户保护法”。 Instagram 上所有未满 18 岁的用户都将被归为“青少年用户”&#xff0c;默认把账号设置为私密状态&#xff0c;自动实施多项防护措施&#xff0c;很多…

Vue3实战:使用 errorHandler 捕获全局错误

你好同学&#xff0c;我是沐爸&#xff0c;欢迎点赞、收藏、评论和关注。 在 Vue3 中&#xff0c;app.config.errorHandler 是一个错误处理器&#xff0c;用于为应用内抛出的未捕获错误指定一个全局处理函数&#xff0c;它接收三个参数&#xff1a;错误对象、触发该错误的组件…

什么品牌超声波清洗机质量好?四大绝佳超声波清洗机品牌推荐!

在快节奏的现代生活中&#xff0c;个人物品的清洁卫生显得至关重要。眼镜、珠宝饰品、手表乃至日常餐厨用具&#xff0c;这些频繁接触的物品极易累积污渍与细菌。拿眼镜为例&#xff0c;缺乏定期清洁会让油渍与尘埃积累&#xff0c;进而成为细菌的温床&#xff0c;靠近眼睛使用…

人脸识别系统+电插锁安装配置过程

一、适用场景 1、各住宅小区内&#xff0c;一个单元涉及多户&#xff0c;一楼安装公共的人脸识别门禁进行身份的认证。 2、某企业的职工住宅区&#xff0c;企业统一安装人脸识别门禁认证身份。 3、自建楼栋&#xff0c;分多间出租给住户时&#xff0c;每个住户配备电子钥匙存在…

GEE使用require函数调用自己的Js库

新建了一个repository&#xff0c;名为Lib 把我的地形校正的函数放了进去 在自己的代码中调用就用到这个路径&#xff0c;主要Lib后面用冒号

观《中国数据库前世今生》有感:从历史到未来的技术变迁

观《中国数据库前世今生》有感&#xff1a;从历史到未来的技术变迁 在数字化浪潮中&#xff0c;数据库技术作为信息化建设的核心&#xff0c;承载了时代发展的脉搏。观看了纪录片《中国数据库前世今生》后&#xff0c;我深深感受到了中国数据库技术从无到有、从追赶到引领的艰…