【AI大模型】LLM主流开源大模型介绍

目录

🍔 LLM主流大模型类别

🍔 ChatGLM-6B模型

2.1 训练目标

2.2 模型结构

2.3 模型配置(6B)

2.4 硬件要求

2.5 模型特点

2.6 衍生应用

🍔 LLaMA模型

3.1 训练目标

3.2 模型结构

3.3 模型配置(7B)

3.4 硬件要求

3.5 模型特点

3.6 衍生应用

🍔 BLOOM模型

4.1 训练目标

4.2 模型结构

4.3 模型配置(176B)

4.4 硬件要求

4.5 模型特点

4.6 衍生应用

🍔 小结


学习目标

🍀 了解LLM主流开源大模型.

🍀 掌握ChatGLM、LLaMA、Bloom等基础大模型的原理

🍔 LLM主流大模型类别

随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。

目前,市面上已经开源了各种类型的大语言模型,本章节我们主要介绍其中的三大类:

  • ChatGLM-6B:衍生的大模型(wenda、ChatSQL等)

  • LLaMA:衍生的大模型(Alpaca、Vicuna、BELLE、Phoenix、Chimera等)

  • Bloom:衍生的大模型(Bloomz、BELLE、Phoenix等)


🍔 ChatGLM-6B模型


ChatGLM-6B 是清华大学提出的一个开源、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。该模型使用了和 ChatGPT 相似的技术,经过约 1T 标识符的中英双语训练(中英文比例为 1:1),辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答(目前中文支持最好)。


2.1 训练目标

GLM是一种基于自回归空白填充目标的通用预训练框架。GLM 将 NLU 任务转化为包含任务描述的完形填空问题,可以通过自回归生成的方式来回答。自回归空白填充目标是指在输入文本中随机挖去一些连续的文本片段,然后训练模型按照任意顺序重建这些片段。完形填空问题是指在输入文本中用一个特殊的符号(如[MASK])替换掉一个或多个词,然后训练模型预测被替换掉的词。


上图说明了GLM的实现思想(训练目标):

  1. 原始文本 $x=[x_1, x_2,...,x_6]$随机进行连续 mask,这里假设 mask 掉$[x_3]$和 $[x_5,x_6]$ .

  2. 将$[x_3]$和 $[x_5,x_6]$ 替换为 [M] 标志,并打乱 Part B 的顺序。为了捕捉跨度之间的内在联系,随机交换跨度的顺序。

  3. GLM 自回归地生成 Part B。 每个片段在输入时前面加上 [S],在输出时后面加上 [E]。 二维位置编码表示不同片段之间和片段内部的位置关系。

  4. 自注意力掩码。 灰色区域被掩盖。Part A 的词语可以自我看到(图蓝色框),但不能看到 Part B。 Part B 的词语可以看到 Part A 和 Part B 中的前面的词语(图黄色和绿色框对应两个片段)。 [M] := [MASK],[S] := [START],[E] := [END]

注意:

  • Position1 和 Position2 是输入的二维编码,第一个维度表示片段在原始文本中的相对位置,第二个维度表示片段内部的相对位置。

  • 假设原始文本是 $x=[x_1, x_2,...,x_6]$,其中$[x_3]$和 $[x_5,x_6]$ 被挖去。那么,被挖去的片段在第一个维度上的位置编码就是它们在原始文本中的索引,即$[x_3]$来自片段 3,$[x_5,x_6]$ 来自片段 5。在第二个维度上的位置编码就是它们在片段中的索引,即 0 和 1。因此, $x_3$的二维位置编码是[3, 0], $x_5$的二维位置编码是[5, 0],$x_6​$ 的二维编码是[5, 1]。

  • 同样,我们可以得到$x_1$的二维位置编码是[1, 0], $x_2$的位置编码是[2, 0], $x_4$的位置编码是[4, 0]。


2.2 模型结构

ChatGLM-6B 采用了 prefix decoder-only 的 transformer 模型框架,在输入上采用双向的注意力机制,在输出上采用单向注意力机制。

相比原始Decoder模块,模型结构有如下改动点:

  • embedding 层梯度缩减:为了提升训练稳定性,减小了 embedding 层的梯度。梯度缩减的效果相当于把 embedding 层的梯度缩小了 10 倍,减小了梯度的范数。

  • layer normalization:采用了基于 Deep Norm 的 post layer norm。

  • 激活函数:替换ReLU激活函数采用了 GeLU 激活函数。

    • GeLU的特点:

      • 相比ReLU稳定且高效

      • 缓解梯度消失

  • 位置编码:去除了绝对位置编码,采用了旋转位置编码 RoPE。

2.3 模型配置(6B)

配置数据
参数6.2B
隐藏层维度4096
层数28
注意力头数32
训练数据1T
词表大小130528
最大长度2048

2.4 硬件要求

量化等级最低GPU显存(推理)最低GPU显存(高效参数微调)
FP16(无量化)13GB14GB
INT810GB9GB
INT46GB7GB

2.5 模型特点

优点:

  • 较低的部署门槛: INT4 精度下,只需6GB显存,使得 ChatGLM-6B 可以部署在消费级显卡上进行推理。

  • 更长的序列长度: 相比 GLM-10B(序列长度1024),ChatGLM2-6B 序列长度达32K,支持更长对话和应用。

  • 人类类意图对齐训练

缺点:

  • 模型容量小,相对较弱的模型记忆和语言能力。

  • 较弱的多轮对话能力。

2.6 衍生应用

LangChain-ChatGLM:基于 LangChain 的 ChatGLM 应用,实现基于可扩展知识库的问答。

闻达:大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能


🍔 LLaMA模型

LLaMA(Large Language Model Meta AI),由 Meta AI 于2023年发布的一个开放且高效的大型基础语言模型,共有 7B、13B、33B、65B(650 亿)四种版本。

LLaMA训练数据是以英语为主的拉丁语系,另外还包含了来自 GitHub 的代码数据。训练数据以英文为主,不包含中韩日文,所有训练数据都是开源的。其中LLaMA-65B 和 LLaMA-33B 是在 1.4万亿 (1.4T) 个 token上训练的,而最小的模型 LLaMA-7B 和LLaMA-13B 是在 1万亿 (1T) 个 token 上训练的。


3.1 训练目标

在训练目标上,LLaMA 的训练目标是语言模型,即根据已有的上文去预测下一个词。

关于tokenizer,LLaMA 的训练语料以英文为主,使用了 Sentence Piece 作为 tokenizer,词表大小只有 32000。词表里的中文 token 很少,只有几百个,LLaMA tokenizer 对中文分词的编码效率比较低。

3.2 模型结构

和 GPT 系列一样,LLaMA 模型也是 Decoder-only`架构,但结合前人的工作做了一些改进,比如:

  • Pre-normalization:为了提高训练稳定性,没有使用传统的 post layer norm,而是使用了 pre layer Norm,同时使用 RMSNorm归一化函数(RMS Norm的主要区别在于去掉了减去均值的部分,简化了Layer Norm 的计算,可以在减少约 7%∼64% 的计算时间)。

  • layer normalization:采用了基于 Deep Norm 的 post layer norm。

  • 激活函数:将 ReLU 非线性替换为 SwiGLU 激活函数。

  • 位置编码:去除了绝对位置编码,采用了旋转位置编码 RoPE。

3.3 模型配置(7B)

配置数据
参数6.7B
隐藏层维度4096
层数32
注意力头数32
训练数据1T
词表大小32000
最大长度2048

3.4 硬件要求

65B的模型,在2048个80G的A100 GPU上,可以达到380 tokens/sec/GPU的速度。训练1.4T tokens需要21天。


3.5 模型特点

优点:

  • 具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿)。

  • 可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。

缺点:

  • 会产生偏见性、有毒或者虚假的内容.

  • 在中文上效果差,训练语料不包含中文或者一个汉字切分为多个 token,编码效率低,模型学习难度大。

3.6 衍生应用

Alpaca: 斯坦福大学在 52k 条英文指令遵循数据集上微调了 7B 规模的 LLaMA。

Vicuna: 加州大学伯克利分校在 ShareGPT 收集的用户共享对话数据上,微调了 13B 规模的 LLaMA。

BELLE: 链家仅使用由 ChatGPT 生产的数据,对 LLaMA 进行了指令微调,并针对中文进行了优化。

Chinese LLaMA:

  • 扩充中文词表:常见做法:在中文语料上使用 Sentence Piece 训练一个中文 tokenizer,使用了 20000 个中文词汇。然后将中文 tokenizer 与原始的 LLaMA tokenizer 合并起来,通过组合二者的词汇表,最终获得一个合并的 tokenizer,称为 Chinese LLaMA tokenizer。词表大小为 49953。


🍔 BLOOM模型

BLOOM系列模型是由 Hugging Face公司的BigScience 团队训练的大语言模型。训练数据包含了英语、中文、法语、西班牙语、葡萄牙语等共 46 种语言,另外还包含 13 种编程语言。1.5TB 经过去重和清洗的文本,转换为 350B 的 tokens。训练数据的语言分布如下图所示,可以看到中文语料占比为 16.2%

按照模型参数量,BLOOM 模型有 560M、1.1B、1.7B、3B、7.1B 和 176B 这几个不同参数规模的模型。


4.1 训练目标

在训练目标上,LLaMA 的训练目标是语言模型,即根据已有的上文去预测下一个词。

关于tokenizer,BLOOM 在多语种语料上使用 Byte Pair Encoding(BPE)算法进行训练得到 tokenizer,词表大小为 250880。

4.2 模型结构

和 GPT 系列一样,LLaMA 模型也是 Decoder-only 架构,但结合前人的工作做了一些改进,比如:

  • embedding layer norm:在 embedding 层后添加了一个 layer normalization,来使训练更加稳定。

  • layer normalization:为了提升训练的稳定性,没有使用传统的 post layer norm,而是使用了 pre layer Norm。

  • 激活函数:采用了 GeLU 激活函数。

  • 位置编码:去除了绝对位置编码,采用了相对位置编码 ALiBi。相比于绝对位置编码,ALiBi 的外推性更好,即虽然训练阶段的最大序列长度为 2048,模型在推理过程中可以处理更长的序列。

4.3 模型配置(176B)

配置数据
参数176B
隐藏层维度14336
层数70
注意力头数112
训练数据366B
词表大小250880
最大长度2048

4.4 硬件要求

176B-BLOOM 模型在384 张 NVIDIA A100 80GB GPU上,训练于 2022 年 3 月至 7 月期间,耗时约 3.5 个月完成 (约 100 万计算时),算力成本超过300万欧元


4.5 模型特点

优点:

  • 具有良好的多语言适应性,能够在多种语言间进行切换,且无需重新训练

缺点:

  • 会产生偏见性、有毒或者虚假的内容.

4.6 衍生应用

轩辕: 金融领域大模型,度小满在 BLOOM-176B 的基础上针对中文通用领域和金融领域进行了针对性的预训练与微调。

BELLE: 链家仅使用由 ChatGPT 生产的数据,对 BLOOMZ-7B1-mt 进行了指令微调。


🍔 小结

  • 本小节主要介绍了LLM主流的开源大模型,对不同模型架构、训练目标、优缺点进行了分析和总结。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/143749.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

ROS第四梯:ROS项目中添加自定义类

第一步,ROS项目结构介绍 工作空间中包含一个名为pcl_ros_test的功能包,其中main.cpp是原有项目自带的,接下来以CommonAlg自定义类添加为例进行介绍。 第二步:头文件CommonAlg.h创建和编写,并保存在include/pcl_ros_tes…

springcloud整合nacos、sentinal、springcloud-gateway,springboot security、oauth2总结

源码地址:下载地址 使用该架构的项目地址:下载地址 下面教大家整合nacos、sentinal、springcloud-gateway,springboot security、oauth2做一个分布式架构 1、第一步整合nacos 1、下载alibaba的nacos 下载地址,然后使用单机模式启动nacos sh startup.sh -m standalon…

828华为云征文 | 云服务器Flexus X实例,搭建上线前后端项目

828华为云征文 | 云服务器Flexus X实例,搭建上线前后端项目 项目搭建 演示使用华为云服务器Flexus X实例搭建上线前后端项目黑马vue电商后台管理系统 项目GitHub链接:https://github.com/Minori-ty/vue_shop.git 1、购买华为云 Flexus X 实例 Flexus云服…

搜索小车运动最短路径python代码实现

一、实验任务 场地中正方格代表障碍物,选取小车运动起点和终点。编程探究小车从起点运动到终点,总共有几种可行的路径(路径不含重叠部分),同时找出最短路径并可视化。 二、实验思路 把场地抽象化为69的平面矩阵&…

基于Linux系统离线安装oracle数据库

注意事项: 在安装的时候多次涉及root用户和oracle用户的切换,请注意区分,本文已明显 一、环境准备 1、关闭防火墙 [rootlocalhost ~]# systemctl stop firewalld2、 禁用NetworkManager服务(非必须) [rootlocalhost …

4 路 4-20mA 电流/0-10V 电压转光纤

型号:MS-F155-AM 功能概述 MS-F155-AM 是将 4-20mA 电流转为光纤信号的模块,分发送和接收两个设备。发送模块将电流或者电压信号转变为光信号,通过光纤传输,接收端将光信号还原为电流或者电压信号。可以延长通信距离,最…

从零开始讲DDR(1)——DDR简介

一、DDR简介 DDR SDRAM(Double Data Rate Synchronous DYNAMIC RAM)中文名是:双倍数据速率同步动态随机存储器。 传统的SDRAM只在时钟信号的上升沿传输数据,而DDR可以同时在时钟的上升沿和下降沿传输数据,因此在同样的…

零信任安全架构--持续验证

随着网络安全威胁的不断演变,传统的“信任但验证”安全模式已无法应对现代复杂的攻击。零信任安全架构(Zero Trust Architecture, ZTA)应运而生,作为一种全新的安全理念,它彻底改变了企业的网络安全防护方式。核心思想…

windows查找端口号被占用

在很多开发的时候,可能端口号有被占用的情况,导致项目打不开。 用下面这个命令即可: 比如我的3000端口被占用,我找找哪个进程在占用我的3000端口号

JAVA惊喜连连无限可能沉浸式盲盒商城系统小程序源码

🎁惊喜连连,无限可能!沉浸式盲盒商城系统,等你来探索🔍 🎉【开篇:盲盒热潮,席卷而来】🎉 在这个充满未知与惊喜的时代,盲盒文化正以前所未有的速度席卷全球…

Vue学习记录之五(组件/生命周期)

一、组件 在每一个.vue文件可以看作是一个组件,组件是可以复用的,每个应用可以看作是一棵嵌套的组件树。 在Vue3中,组件导入以后即可直接使用。 二、组件的生命周期 生命周期就是从诞生(创建)到死亡(销毁) 的过程。 Vue3 组合式API中(se…

Rocky 8.7 操作系统 安装部署 MySQL 5.7.32 验证测试

一、安装部署 主从服务器都需提前安装部署MySQL 5.7.32 数据库软件,本次选择采用二进制安装。 配置主从,要注意调整主备库server_id不能保持一致。 主库修改/etc/my.cnf文件,添加 server-id1log-binmysql-binbinlog-do-dbmsdbbinlog-ign…

java se 快速入门

文章目录 java se 快速入门Java 简介Java的优点jdk 和 jre安装jdk配置环境变量Java 语法快速入门程序入口文件名类规范 基本语法注释变量和常量输入输出条件语句循环语句 基本数据类型Java字符串常用方法字符串拼接java字节数组和字符串相互转化java字符数组和字符串相互转换ja…

传输层协议 —— TCP协议(上篇)

目录 1.认识TCP 2.TCP协议段格式 3.可靠性保证的机制 确认应答机制 超时重传机制 连接管理机制 三次握手 四次挥手 1.认识TCP 在网络通信模型中,传输层有两个经典的协议,分别是UDP协议和TCP协议。其中TCP协议全称为传输控制协议(Tra…

torch.embedding 报错 IndexError: index out of range in self

文章目录 1. 报错2. 原因3. 解决方法 1. 报错 torch.embedding 报错: IndexError: index out of range in self2. 原因 首先看下正常情况: import torch import torch.nn.functional as Finputs torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) embedd…

游戏如何检测加速外挂

在游戏面临的众多外挂风险中,除了常见的内存修改挂、注入挂等作弊手段,黑灰产还常用「加速」手段实现作弊。 游戏安全风险分布占比图 「加速」顾名思义是指改变游戏内的速度。游戏在运行中需要以帧为单位播放画面,而计算每帧动画播放所需时间…

代码随想录算法训练营第3天|链表理论基础、203. 移除链表元素、 707.设计链表、 206.反转链表

目录 链表理论基础203. 移除链表元素1、题目描述2、思路3、code4、复杂度分析 707. 设计链表1、题目描述2、思路3、code 206. 反转链表1、题目描述2、思路3、code4、复杂度分析 链表理论基础 ❤️链表增删的时间复杂度都是 O ( 1 ) O(1) O(1),适合动态增删&#xf…

C语言进阶【4】---数据在内存中的存储【1】(你不想知道数据是怎样存储的吗?)

本章概述 整数在内存中的存储大小端字节序和字节序判断练习1练习2练习3练习4练习5练习6 彩蛋时刻!!! 整数在内存中的存储 回忆知识:在讲操作符的那章节中,对于整数而言咱们讲过原码,反码和补码。整数分为有…

【初阶数据结构】一文讲清楚 “堆” 和 “堆排序” -- 树和二叉树(二)(内含TOP-K问题)

文章目录 前言1. 堆1.1 堆的概念1.2 堆的分类 2. 堆的实现2.1 堆的结构体设置2.2 堆的初始化2.3 堆的销毁2.4 添加数据到堆2.4.1 "向上调整"算法 2.5 从堆中删除数据2.5.1 “向下调整”算法 2.6 堆的其它各种方法接口函数 3. 堆排序3.1 堆排序的代码实现 4. TOP-K问题…