【深度学习】(3)--损失函数

文章目录

  • 损失函数
    • 一、L1Loss损失函数
      • 1. 定义
      • 2. 优缺点
      • 3. 应用
    • 二、NLLLoss损失函数
      • 1. 定义与原理
      • 2. 优点与注意
      • 3. 应用
    • 三、MSELoss损失函数
      • 1. 定义与原理
      • 2. 优点与注意
      • 3. 应用
    • 四、BCELoss损失函数
      • 1. 定义与原理
      • 2. 优点与注意
      • 3. 应用
    • 五、CrossEntropyLoss损失函数
      • 1. 定义与原理
      • 2. 优点与注意
      • 3. 应用
  • 总结

损失函数

损失函数(Loss Function)是机器学习和深度学习中非常重要的一个概念,它用于评估模型的预测值与实际值之间的差异程度。在训练过程中,损失函数作为优化的目标,通过最小化损失函数的值来调整模型参数,从而提高模型的预测准确性。

具体来说,损失函数将模型的预测输出(例如,一个分类任务中的类别概率分布)与真实标签(或真实值)进行比较,并计算出一个表示差异的数值。这个数值越大,表示模型的预测越不准确;数值越小,表示模型的预测越接近真实情况。

接下来,我们介绍几个常用的损失函数。

一、L1Loss损失函数

L1Loss损失函数,也被称为平均绝对误差(Mean Absolute Error, MAE),是深度学习和机器学习中常用的一种损失函数,特别是在回归任务中。

1. 定义

L1Loss计算的是模型预测值f(x)与真实值y之间差的绝对值的平均值。其数学表达式为:

在这里插入图片描述

其中,n是样本数量,yi是第i个样本的真实值,f(xi)是模型对第i个样本的预测值。

2. 优缺点

  • 优点
  1. 稳定性:L1Loss对于所有输入值都有稳定的梯度,不会导致梯度爆炸问题,因此具有较为稳健的解。
  2. 鲁棒性:L1Loss对于噪声和异常值(离群点)具有相对较强的鲁棒性,因为它不会因个别异常值而产生过大的误差。
  3. 稀疏性:L1Loss能够产生稀疏的特征权重,即很多无用或影响较小的特征的权重会被置为0,有助于特征选择和模型简化。
  • 缺点
  1. 不可导性:在0点处,L1Loss的梯度不存在(因为绝对值函数在0点不可导),这可能导致在优化过程中,当权重恰好接近0时,梯度下降法无法继续进行。
  2. 收敛速度:与L2Loss相比,L1Loss在误差较大时,其梯度是恒定的,这可能导致在接近最优解时收敛速度较慢。

3. 应用

  1. L1Loss通常用于回归任务中,特别是当模型需要处理的数据集存在较多噪声或异常值。
  2. 或者希望模型具有稀疏特征时。

然而,由于神经网络通常解决的是复杂问题,且L1Loss在0点不可导的缺点,它在神经网络中的应用相对较少,尤其是在需要精细调整权重的情况下。

二、NLLLoss损失函数

NLLLoss损失函数,全称为Negative Log Likelihood Loss(负对数似然损失),是深度学习中常用的一种损失函数,尤其在处理分类问题时表现出色。

1. 定义与原理

NLLLoss衡量的是模型预测概率分布与真实标签之间差异的损失。在PyTorch等深度学习框架中,它通常用于多分类任务。具体来说,NLLLoss计算的是对数概率的负值与真实标签之间的交叉熵损失。这样做的目的是通过最小化损失来优化模型参数,使得模型的预测结果更加接近真实标签。

2. 优点与注意

NLLLoss损失函数的优点在于它能够直接反映模型预测的概率分布与真实标签之间的差异,且计算过程相对简单高效。然而,在使用时需要注意以下几点:

  1. 输入要求:NLLLoss要求输入的对数概率必须是通过log_softmax函数计算得到的,而不能直接使用softmax函数的输出。
  2. 目标标签:目标标签需要是整数类型,表示每个样本的真实类别索引。
  3. 权重调整:如果需要对不同类别的损失进行权重调整,可以在NLLLoss函数中设置相应的权重参数。
  4. 数值稳定性:由于NLLLoss涉及对数运算,因此需要注意数值稳定性问题。通过先应用log_softmax函数可以避免直接计算softmax时可能出现的上溢或下溢问题。

3. 应用

NLLLoss损失函数在多分类问题中广泛应用,包括但不限于自然语言处理(NLP)中的语言模型、情感分类等任务。在这些任务中,模型需要将输入序列映射到输出标签,而NLLLoss能够评估模型预测的概率分布与真实标签之间的差异,从而指导模型的优化方向。

三、MSELoss损失函数

MSELoss损失函数,全称为Mean Squared Error Loss(均方误差损失函数),是深度学习中常用的一种回归损失函数

1. 定义与原理

MSELoss通过计算预测值与真实值之间差的平方的平均值来衡量模型的性能。具体来说,对于每个样本,它计算预测值与真实值之差的平方,然后对所有样本的平方误差求和并取平均,得到最终的损失值。这种损失函数旨在通过最小化预测值与真实值之间的差异来优化模型参数,从而提高模型的预测准确性。

对于单个样本,假设预测值为 y^,真实值为 y,则该样本的均方误差为 (y^−y)2。对于包含 n 个样本的数据集,MSELoss的计算公式为:

在这里插入图片描述

2. 优点与注意

  • 优点
  1. 优化景观:MSE结果是一个平滑且凸的优化景观,这有助于使用基于梯度的算法(如梯度下降)进行高效优化。
  2. 唯一极小值:MSE具有唯一的全局极小值,这简化了优化过程,并在某些情况下可以获得解析解。
  3. 可微性:MSE在任何地方都是可微的,这使得在训练过程中可以使用基于梯度的优化方法。
  4. 广泛适用性:MSE是回归问题的标准且广泛使用的损失函数,适用于预测连续的数值。
  • 注意
  1. 对异常值敏感:由于MSE计算的是误差的平方,因此它对异常值非常敏感。当数据集中存在极端值时,这些异常值可能会对损失值产生不成比例的影响,从而导致模型性能下降。
  2. 非直观的尺度:MSE的尺度受到平方差的影响,这可能导致其解释性较差。特别是在与原始数据的尺度相比时,MSE可能难以直观地反映模型预测的准确性。

3. 应用

MSELoss在多种回归任务中表现出色,包括但不限于房价预测、股票价格预测、气温预测等。在这些任务中,模型需要输出一个连续的数值预测结果,而MSELoss能够有效地评估模型预测结果与实际值之间的差异,并指导模型的优化方向。

四、BCELoss损失函数

BCELoss损失函数,全称为Binary Cross Entropy Loss(二元交叉熵损失函数),是深度学习中常用于二分类问题的一种损失函数。

1. 定义与原理

BCELoss通过计算模型预测的概率分布与实际标签之间的交叉熵损失来评估模型的性能。在二分类问题中,每个样本的真实标签是0或1,而模型输出的是一个介于0和1之间的概率值,表示该样本属于正类的概率。BCELoss通过比较这两个值之间的差异,为模型提供一个损失值,该值越大表示模型预测越不准确。

对于单个样本,BCELoss的数学公式为:

在这里插入图片描述

其中,y 是实际标签(0 或 1),p 是模型输出的概率值(预测为正类的概率),log 是自然对数。

  • y=1 时,损失函数简化为 −log(p),此时如果 p 越接近 1,则损失越小;
  • y=0 时,损失函数简化为 −log(1−p),此时如果 p 越接近 0,则损失越小。

对于一批样本,BCELoss通常是对所有样本的BCELoss求和后取平均值。

2. 优点与注意

  • 优点
  1. 直观性:BCELoss能够直观地反映模型预测的概率分布与实际标签之间的差异,从而指导模型的优化方向。
  2. 鲁棒性:在二分类问题中,BCELoss对正负样本的预测误差都进行了考虑,使得模型在训练过程中能够同时关注到正负样本的分类情况。
  3. 易于实现:在深度学习框架(如PyTorch、TensorFlow等)中,BCELoss通常作为内置函数提供,易于实现和使用。
  • 注意
  1. 输入要求:在使用BCELoss时,需要注意模型输出的概率值应该经过Sigmoid函数或其他适当的激活函数处理,以确保其值在0和1之间。
  2. 标签要求:BCELoss要求真实标签必须是二值化的(0或1),而不是其他形式的标签(如类别索引、独热编码等)。
  3. 数值稳定性:在计算BCELoss时,需要注意数值稳定性问题。例如,当预测概率 p 非常接近0或1时,log(p) 或 log(1−p) 的值可能会变得非常大或非常小,导致计算过程中出现数值问题。为了避免这种情况,可以对 p 进行一些平滑处理(如添加一个小的正数 ϵp 和 1−p 中)。

3. 应用

BCELoss广泛应用于各类二分类任务中,如文本情感分析(积极/消极)、垃圾邮件检测(垃圾邮件/非垃圾邮件)、病患诊断(患病/未患病)等。在这些任务中,模型需要输出一个二分类的概率预测结果,而BCELoss能够有效地评估模型预测的准确性,并指导模型的优化方向。

五、CrossEntropyLoss损失函数

CrossEntropyLoss损失函数,也称为交叉熵损失函数,是深度学习中用于分类问题的一种常用损失函数。它衡量的是模型预测的概率分布与真实标签的概率分布之间的差异。尽管它通常与多分类问题相关联,但也可以用于二分类问题(在这种情况下,它等价于二元交叉熵损失,即BCELoss的特例)。

1. 定义与原理

交叉熵损失函数通过比较模型对每个类别的预测概率和真实的标签(通常是独热编码形式)来计算损失。如果模型对某个样本的预测概率分布与真实标签越接近,则交叉熵损失越小;反之,损失越大。

对于多分类问题,假设有C个类别,对于每个样本,交叉熵损失的计算公式如下:

在这里插入图片描述

其中,yc 是样本的真实标签中第 c 类的值(在独热编码中,只有一个元素为1,其余为0),pc 是模型预测的第 c 类的概率。

注意,在实际计算中,由于 yc 是独热编码的,所以上式中的求和实际上只涉及一个非零项,即真实标签对应类别的预测概率的对数的负值。

2. 优点与注意

  • 优点
  1. 直观性:交叉熵损失能够直观地反映模型预测的概率分布与真实标签之间的差异。
  2. 易于优化:由于交叉熵损失函数是凸函数(在模型输出为softmax概率的情况下),因此可以使用梯度下降等优化算法来有效地最小化损失。
  3. 鲁棒性:交叉熵损失对预测概率的微小变化敏感,这有助于模型在训练过程中更准确地逼近真实标签。
  • 注意
  1. 输入要求:在使用交叉熵损失函数时,需要确保模型输出的是概率值(通常通过softmax函数进行转换),而真实标签是独热编码形式的。
  2. 数值稳定性:当预测概率接近0时,log(p) 的值会趋于负无穷,这可能导致数值问题。为了解决这个问题,可以在计算对数之前对预测概率进行平滑处理(例如,添加一个小的正数 ϵ 到预测概率中)。
  3. 权重平衡:在处理类别不平衡的数据集时,可以为不同类别的损失分配不同的权重,以改善模型的性能。

3. 应用

交叉熵损失函数广泛应用于多分类问题中,如图像分类、文本分类等。在这些任务中,模型需要输出每个类别的概率预测,而交叉熵损失函数能够有效地评估模型预测的准确性,并指导模型的优化方向。

总结

本篇介绍了部分损失函数,损失函数有很多,这些是较为常用的,其余可以自行了解哦~

  1. L1Loss损失函数:通常用于回归任务中。
  2. NLLLoss损失函数:在多分类问题中广泛应用。
  3. MSELoss损失函数:在多种回归任务中表现出色。
  4. BCELoss损失函数:广泛应用于各类二分类任务中
  5. CrossEntropyLoss交叉熵损失函数:广泛应用于多分类问题中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/143553.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

在Python中快速获取HTML中<span>标签的内容

在Python中&#xff0c;要获取HTML中<span>标签的内容&#xff0c;通常我们会使用像BeautifulSoup这样的库&#xff0c;它提供了方便的方法来解析HTML和XML文件&#xff0c;并从中提取数据。下面是一个使用BeautifulSoup来获取<span>标签内容的简单示例。 首先&am…

地图API配置错误漏洞导致的key或者ak泄露

0x1 前言 哈喽&#xff0c;师傅们&#xff01; 这篇文章主要是带师傅们掌握下地图API配置错误漏洞导致的key或者ak泄露&#xff0c;然后进行使用我们总结的payload进行打一个漏洞利用。下面也会给师傅们举例我挖到的部分地图API漏洞&#xff0c;其中企业src部分企业会收这个漏…

营销必不可少的神器:邮件群发系统

对于企业推广而言&#xff0c;电子邮件群发工具是网络营销的利器&#xff0c;无论是产品宣传、客户维护&#xff0c;还是发送通知、节日问候等都离不开它。这些工具操作简便&#xff0c;只需轻轻一点&#xff0c;就能将信息迅速送达客户的邮箱。特别是对外贸企业来说&#xff0…

转行AI产品经理入门指南(非常详细)零基础入门到精通,收藏这一篇就够了

AI产品经理和传统产品经理有哪些不同&#xff1f;薪资前景怎么样?应当以怎样的姿势入行&#xff1f; 这篇干货回答将告诉你AI产品经理具体做什么、有哪些分类、需要哪些技能、以及具体的学习路线&#xff0c;帮助你开启你的转行旅程。 作为从业人员&#xff0c;非常负责任的…

计算机考研408-计算机网络

【题33】下列选项中&#xff0c;不属于网络体系结构所描述的内容是&#xff08;&#xff09; A.网络的层次 B.每一层使用的协议 C.协议的内部实现细节 D.每一层必须完成的功能 解析&#xff1a; 本题考查的是网络体系结构相关的概念。 图1描述了网络的7层架构以及每一层所要完成…

[Linux]远程登录

公司正式上线的项目是运行在公网, 因此需要远程登录到Linux进行项目管理或者开发 运行登录工具使用Xshell6 和 Xfttp6 xhell安装 Xshell是远程登录Linux的工具, 流畅的速度并且解决了中文乱码的问题 Xshell是一个强大的安全终端模拟软件, 支持SSH1, SSH2, 以及Microsoft Wi…

Docker本地部署Chatbot Ollama搭建AI聊天机器人并实现远程交互

文章目录 前言1. 拉取相关的Docker镜像2. 运行Ollama 镜像3. 运行Chatbot Ollama镜像4. 本地访问5. 群晖安装Cpolar6. 配置公网地址7. 公网访问8. 固定公网地址 前言 本文主要分享如何在群晖NAS本地部署并运行一个基于大语言模型Llama 2的个人本地聊天机器人并结合内网穿透工具…

macos macport软件包管理工具 sudo port install xxx 安装的软件的路径 与 brew install xxx 软件安装路径总结

macos下优秀的软件包管理工具 macport 和brew 安装软件后他们的安装路径是有区别的&#xff0c; macport包管理工具的 sudo port install xxx安装的软件的路径一般位于 /opt/local路径下的 bin, include, lib, share 文件夹内&#xff0c;而 通过brew install xxx 安装后的软件…

胤娲科技:谷歌DeepMind祭出蛋白质设计新AI——癌症治疗迎来曙光

在科技的浩瀚星空中&#xff0c;DeepMind的“阿尔法”家族总是能带来令人瞩目的璀璨光芒。这一次&#xff0c;它们再次以惊人的姿态&#xff0c; 将AI的触角深入到了生命的微观世界——蛋白质设计领域&#xff0c;为我们描绘了一幅未来医疗的宏伟蓝图。 想象一下&#xff0c;一…

自动驾驶TPM技术杂谈 ———— 多传感器信息融合

文章目录 概述融合概述融合结构Low-Level融合数据级融合特征级融合 High-Level融合混合式融合结构分析比较 融合算法随机类方法加权平均法贝叶斯估计法D-S 证据理论卡尔曼滤波法线性离散卡尔曼滤波方程状态估计 概述 不同车载传感器的原理、功能各异&#xff0c;在不同的场景下…

CH1-2 误差分析

一、误差的概念 用计算机进行实际问题的数值计算时&#xff0c;往往求得的是问题的近似解&#xff0c;都存在误差。 模型误差&#xff1a;在建立数学模型过程中&#xff0c;要将复杂的现象抽象归结为数学模型&#xff0c;往往要忽略一些次要因素的影响,而对问题作一些简化&am…

2007-2021年世界各国各行业全球价值链数据

2007-2021年世界各国各行业全球价值链数据 1、时间&#xff1a;2007-2021年 2、指标&#xff1a;部门、sector、region、year、GVCpt_f&#xff08;全球价值链前向参与度&#xff09;、GVCpt_b&#xff08;全球价值链后向参与度&#xff09;、GVCposition&#xff08;全球价值…

c/c++语言中extern的用法(VS编译)

c/c语言中extern的用法 前言&#xff1a;1. 声明外部变量2. 声明外部函数3. 在头文件中使用注意事项 效果展示&#xff1a; 前言&#xff1a; extern 关键字不仅在 C 语言中使用&#xff0c;在 C 语言中也同样适用。它主要用于声明一个变量或者函数是在别的文件或翻译单元中定…

HTTPS:构建安全通信的基石

HTTPS&#xff08;Hypertext Transfer Protocol Secure&#xff09;&#xff0c;作为互联网上安全通信的基石&#xff0c;通过在HTTP基础上引入SSL/TLS协议层&#xff0c;实现了数据传输的加密&#xff0c;确保了信息的机密性、完整性和真实性。这一过程涉及多个精细设计的步骤…

DIY 一把 ESP32-C2 智能电动牙刷

简介 对于大多数人来说&#xff0c;早晨起床后的惯例之一是刷牙。早在 1938 年尼龙牙刷问世之前&#xff0c;人们就已经使用各种不同形式和材料的器具来清洁牙齿。 如今&#xff0c;电子牙刷已经十分普遍&#xff0c;甚至还有帮助记录刷牙习惯的智能牙刷。 我们的产品设计理念…

什么是IDS?

什么是IDS&#xff1f; IDS是&#xff1a;入侵检测系统&#xff08;intrusion detection system&#xff0c;简称“IDS”&#xff09;是一种对网络传输进行即时监视&#xff0c;在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。它与其他网络安全设备的不同之处便…

闲鱼网页版开放,爬虫的难度指数级降低。

爬虫&#xff0c;可以说是程序员最基础的热手项目。 之前我也一直说阿里系的签名系统搞得太复杂&#xff0c;风控太高&#xff0c;很不利于正常的自动化工具开发&#xff0c;这对于需要阿里应用的客户来说&#xff0c;也是一个很难覆盖的成本支出不是。 当然&#xff0c;我做项…

低代码可视化Uniapp点击事件-代码生成器

在uniapp中&#xff0c;绑定事件主要是通过符号来实现的。uniapp是一个使用Vue.js开发所有前端应用的框架&#xff0c;它允许你编写一次代码&#xff0c;然后发布到iOS、Android、Web&#xff08;响应式&#xff09;、以及各种小程序等多个平台。因此&#xff0c;它在事件处理上…

培养关键职业技能,提升个人竞争力

文章目录 一、为什么要培养职业技能&#xff1f;1、提升个人竞争力2、提高工作效率和质量3、适应职业发展变化4、增加收入 二、关键职业技能概述1、专业技术能力2、问题解决能力3、沟通交流能力4、团队合作能力5、领导意识能力6、适应变化能力 三、结语 在当今快速发展的社会中…

如何成为一名AI产品经理?(超全面!超详细!)收藏这一篇就够了!

要成为一名AI产品经理&#xff0c;需要综合多方面的知识和技能&#xff0c;并在实践中不断学习和提升。 一、强化基础教育背景 专业选择&#xff1a;拥有计算机科学、数据科学、统计学或相关领域的学士或硕士学位是基础。这些专业提供了理解AI技术和算法的基本知识&#xff0…