c++难点核心笔记(二)

系列文章目录

c++难点&核心笔记(一)
继续接着上一章记录的重点内容包括函数,类和对象,指针和引用,C++对象模型和this指针等内容,继续给大家分享!!


文章目录

  • 系列文章目录
  • 友元
    • 全局函数做友元
    • 类做友元
    • 成员函数做友元
  • 运算符重载
    • 加号运算符重载
    • 左移运算符重载
    • 递增运算符重载
    • 赋值运算符重载
    • 函数调用运算符重载
  • 继承
    • 继承的基本语法
    • 继承中构造和析构顺序
    • 继承同名成员处理方式
    • 多继承语法
    • 菱形继承
  • 多态
    • 多态的基本概念
    • 纯虚函数和抽象类
    • 虚析构和纯虚析构
  • 模板
    • 函数模板
    • 函数模板语法
    • 函数模板案例
    • 普通函数与函数模板的区别
    • 普通函数与函数模板的调用规则
  • 类模板
    • 类模板与函数模板区别
    • 类模板中成员函数创建时机
    • 类模板对象做函数参数
    • 类模板与继承
    • 类模板成员函数类外实现
    • 类模板分文件编写
    • 类模板与友元
    • 类模板案例
  • 总结


友元

在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术友元的目的就是让一个函数或者类 访问另一个类中私有成员

友元的关键字为 friend

友元的三种实现

  1. 全局函数做友元
  2. 类做友元
  3. 成员函数做友元

全局函数做友元

代码如下(示例):

class Building{friend void goodGay(Building * building);
public:Building(){this->m_SittingRoom = "客厅";this->m_BedRoom = "卧室";}
public:string m_SittingRoom; //客厅private:string m_BedRoom; //卧室
}
void goodGay(Building * building)
{cout << "好基友正在访问: " << building->m_SittingRoom << endl;cout << "好基友正在访问: " << building->m_BedRoom << endl;
}
void test01()
{Building b;goodGay(&b);
}
int main(){test01();system("pause");return 0;
}

类做友元

class Building;
class goodGay
{
public:goodGay();void visit();
private:Building *building;
};class Building
{//告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容friend class goodGay;
public:Building();
public:string m_SittingRoom; //客厅
private:string m_BedRoom;//卧室
};Building::Building()
{this->m_SittingRoom = "客厅";this->m_BedRoom = "卧室";
}
goodGay::goodGay()
{building = new Building;
}
void goodGay::visit()
{cout << "好基友正在访问" << building->m_SittingRoom << endl;cout << "好基友正在访问" << building->m_BedRoom << endl;
}
void test01()
{goodGay gg;gg.visit();
}
int main(){test01();system("pause");return 0;
}

成员函数做友元

class Building;
class goodGay
{
public:goodGay();void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容void visit2(); private:Building *building;
};
class Building
{//告诉编译器  goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容friend void goodGay::visit();
public:Building();
public:string m_SittingRoom; //客厅
private:string m_BedRoom;//卧室
};
Building::Building()
{this->m_SittingRoom = "客厅";this->m_BedRoom = "卧室";
}
goodGay::goodGay()
{building = new Building;
}
void goodGay::visit()
{cout << "好基友正在访问" << building->m_SittingRoom << endl;cout << "好基友正在访问" << building->m_BedRoom << endl;
}
void goodGay::visit2()
{cout << "好基友正在访问" << building->m_SittingRoom << endl;//cout << "好基友正在访问" << building->m_BedRoom << endl;
}void test01()
{goodGay  gg;gg.visit();
}int main(){test01();system("pause");return 0;
}

运算符重载

概念:对已有的运算符重新进一步定义,赋予其另一种功能,以适应不同的数据类型

加号运算符重载

作用:实现两个自定义数据类型相加的运算

class Person
{
public:Person(){};Person(int a,int b){this->m_A=a;this->m_B=b;}Person operator+(const Person& p){Person t;t.m_A = this->m_A+p.m_A;t.m_B = this.m_B+p.m_B;return t;}
public:int m_A;int m_B;
}
//运算符重载 可以发生函数重载 
Person operator+(const Person& p2, int val)  
{Person temp;temp.m_A = p2.m_A + val;temp.m_B = p2.m_B + val;return temp;
}
void test() {Person p1(10, 10);Person p2(20, 20);//成员函数方式Person p3 = p2 + p1;  //相当于 p2.operaor+(p1)cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl;Person p4 = p3 + 10; //相当于 operator+(p3,10)cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;}
int main() {test();system("pause");return 0;
}

总结1:对于内置的数据类型的表达式的的运算符是不可能改变的

总结2:不要滥用运算符重载

左移运算符重载

作用:可以输出自定义数据类型

 class Person {friend ostream& operator<<(ostream& out, Person& p);
public:Person(int a, int b){this->m_A = a;this->m_B = b;}//成员函数 实现不了  p << cout 不是我们想要的效果//void operator<<(Person& p){//}
private:int m_A;int m_B;
};
//全局函数实现左移重载
//ostream对象只能有一个
ostream& operator<<(ostream& out, Person& p) {out << "a:" << p.m_A << " b:" << p.m_B;return out;
}void test() {Person p1(10, 20);cout << p1 << "hello world" << endl; //链式编程
}int main() {test();system("pause");return 0;
}

总结:重载左移运算符配合友元可以实现输出自定义数据类型

递增运算符重载

class MyInteger {friend ostream& operator<<(ostream& out, MyInteger myint);
public:MyInteger() {m_Num = 0;}//前置++MyInteger& operator++() {//先++m_Num++;//再返回return *this;}//后置++MyInteger operator++(int) {//先返回MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++;m_Num++;return temp;}
private:int m_Num;
};
ostream& operator<<(ostream& out, MyInteger myint) {out << myint.m_Num;return out;
}
//前置++ 先++ 再返回
void test01() {MyInteger myInt;cout << ++myInt << endl;cout << myInt << endl;
}
//后置++ 先返回 再++
void test02() {MyInteger myInt;cout << myInt++ << endl;cout << myInt << endl;
}
int main() {test01();//test02();system("pause");return 0;
}

总结: ++a前置递增返回引用,a++后置递增返回值

赋值运算符重载

c++编译器至少给一个类添加4个函数

  1. 默认构造函数(无参,函数体为空)
  2. 默认析构函数(无参,函数体为空)
  3. 默认拷贝构造函数,对属性进行值拷贝
  4. 赋值运算符 operator=, 对属性进行值拷贝

如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题

class Person
{
public:Person(int age){//将年龄数据开辟到堆区m_Age = new int(age);}//重载赋值运算符 Person& operator=(Person &p){if (m_Age != NULL){delete m_Age;m_Age = NULL;}//编译器提供的代码是浅拷贝//m_Age = p.m_Age;//提供深拷贝 解决浅拷贝的问题m_Age = new int(*p.m_Age);//返回自身return *this;}~Person(){if (m_Age != NULL){delete m_Age;m_Age = NULL;}}//年龄的指针int *m_Age;};void test01()
{Person p1(18);Person p2(20);Person p3(30);p3 = p2 = p1; //赋值操作cout << "p1的年龄为:" << *p1.m_Age << endl;cout << "p2的年龄为:" << *p2.m_Age << endl;cout << "p3的年龄为:" << *p3.m_Age << endl;
}int main() {test01();//int a = 10;//int b = 20;//int c = 30;//c = b = a;//cout << "a = " << a << endl;//cout << "b = " << b << endl;//cout << "c = " << c << endl;system("pause");return 0;
}

函数调用运算符重载

函数调用运算符()也可以重载由于重载后使用的方式非常像函数的调用,因此称为仿函数仿函数没有固定写法,非常灵活

 class MyPrint
{
public:void operator()(string text){cout << text << endl;}};
void test01()
{//重载的()操作符 也称为仿函数MyPrint myFunc;myFunc("hello world");
}
class MyAdd
{
public:int operator()(int v1, int v2){return v1 + v2;}
};
void test02()
{MyAdd add;int ret = add(10, 10);cout << "ret = " << ret << endl;//匿名对象调用  cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
}int main() {test01();test02();system("pause");return 0;
}

继承

继承是面向对象三大特性之一

我们发现,定义这些类,下级别的成员除了拥有上一级的共性,还有自己的特性。这个时候我们就可以考虑利用继承的技术,减少重复代码

继承的基本语法

例如我们看到很多网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不同。

//公共页面
class BasePage
{
public:void header(){cout << "首页、公开课、登录、注册...(公共头部)" << endl;}void footer(){cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;}void left(){cout << "Java,Python,C++...(公共分类列表)" << endl;}};
//Java页面
class Java : public BasePage
{
public:void content(){cout << "JAVA学科视频" << endl;}
};
//Python页面
class Python : public BasePage
{
public:void content(){cout << "Python学科视频" << endl;}
};
//C++页面
class CPP : public BasePage
{
public:void content(){cout << "C++学科视频" << endl;}
};void test01()
{//Java页面cout << "Java下载视频页面如下: " << endl;Java ja;ja.header();ja.footer();ja.left();ja.content();cout << "--------------------" << endl;//Python页面cout << "Python下载视频页面如下: " << endl;Python py;py.header();py.footer();py.left();py.content();cout << "--------------------" << endl;//C++页面cout << "C++下载视频页面如下: " << endl;CPP cp;cp.header();cp.footer();cp.left();cp.content();
}int main() {test01();system("pause");return 0;
}

总结:继承的好处,可以减少重复代码,class A : public B
A类称为子类,派生类
B类称为父类,基类

派生类成员包含两部分:

  1. 一类是从基类继承过来的,一类是自己增加的成员
  2. 从基类继承过来的表现共性,而新增的成语体现了个性

继承方式一共有三种:

  • 公共继承
  • 保护继承
  • 私有继承
class Base1
{
public: int m_A;
protected:int m_B;
private:int m_C;
};//公共继承
class Son1 :public Base1
{
public:void func(){m_A; //可访问 public权限m_B; //可访问 protected权限//m_C; //不可访问}
};void myClass()
{Son1 s1;s1.m_A; //其他类只能访问到公共权限
}//保护继承
class Base2
{
public:int m_A;
protected:int m_B;
private:int m_C;
};
class Son2:protected Base2
{
public:void func(){m_A; //可访问 protected权限m_B; //可访问 protected权限//m_C; //不可访问}
};
void myClass2()
{Son2 s;//s.m_A; //不可访问
}//私有继承
class Base3
{
public:int m_A;
protected:int m_B;
private:int m_C;
};
class Son3:private Base3
{
public:void func(){m_A; //可访问 private权限m_B; //可访问 private权限//m_C; //不可访问}
};
class GrandSon3 :public Son3
{
public:void func(){//Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到//m_A;//m_B;//m_C;}
};

问题:从父类继承过来的成员,哪些属于子类对象中?

class Base
{
public:int m_A;
protected:int m_B;
private:int m_C; //私有成员只是被隐藏了,但是还是会继承下去
};
//公共继承
class Son :public Base
{
public:int m_D;
};
void test01()
{cout << "sizeof Son = " << sizeof(Son) << endl;
}
int main() {test01();system("pause");return 0;
}

这是因为:

  • Base 类中有三个 int 成员(每个 int 占 4 字节),加上可能的对齐填充,总大小为 16 字节。
  • Son 类新增了一个 int 成员 m_D,因此总大小为 16 字节(假设没有额外的对齐填充)
sizeof Son = 16

继承中构造和析构顺序

子类继承父类后,当创建子类对象,也会调用父类的构造函数
问题:父类和子类的构造和析构顺序是谁先谁后?

class Base 
{
public:Base(){cout << "Base构造函数!" << endl;}~Base(){cout << "Base析构函数!" << endl;}
};
class Son : public Base
{
public:Son(){cout << "Son构造函数!" << endl;}~Son(){cout << "Son析构函数!" << endl;}
};
void test01()
{//继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反Son s;
}
int main() {test01();system("pause");return 0;
}

总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反

继承同名成员处理方式

问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?

  1. 访问子类同名成员 直接访问即可
  2. 访问父类同名成员 需要加作用域
class Base {
public:static void func(){cout << "Base - static void func()" << endl;}static void func(int a){cout << "Base - static void func(int a)" << endl;}static int m_A;
};
int Base::m_A = 100;
class Son : public Base {
public:static void func(){cout << "Son - static void func()" << endl;}static int m_A;
};int Son::m_A = 200;//同名成员属性
void test01()
{//通过对象访问cout << "通过对象访问: " << endl;Son s;cout << "Son  下 m_A = " << s.m_A << endl;cout << "Base 下 m_A = " << s.Base::m_A << endl;//通过类名访问cout << "通过类名访问: " << endl;cout << "Son  下 m_A = " << Son::m_A << endl;cout << "Base 下 m_A = " << Son::Base::m_A << endl;
}
//同名成员函数
void test02()
{//通过对象访问cout << "通过对象访问: " << endl;Son s;s.func();s.Base::func();cout << "通过类名访问: " << endl;Son::func();Son::Base::func();//出现同名,子类会隐藏掉父类中所有同名成员函数,需要加作作用域访问Son::Base::func(100);
}
int main() {//test01();test02();system("pause");return 0;
}

多继承语法

C++允许一个类继承多个类
语法: class 子类 :继承方式 父类1 , 继承方式 父类2...
多继承可能会引发父类中有同名成员出现,需要加作用域区分
C++实际开发中不建议用多继承

class Base1 {
public:Base1(){m_A = 100;}
public:int m_A;
};
class Base2 {
public:Base2(){m_A = 200;  //开始是m_B 不会出问题,但是改为mA就会出现不明确}
public:int m_A;
};
//语法:class 子类:继承方式 父类1 ,继承方式 父类2 
class Son : public Base2, public Base1 
{
public:Son(){m_C = 300;m_D = 400;}
public:int m_C;int m_D;
};
//多继承容易产生成员同名的情况
//通过使用类名作用域可以区分调用哪一个基类的成员
void test01()
{Son s;cout << "sizeof Son = " << sizeof(s) << endl;cout << s.Base1::m_A << endl;cout << s.Base2::m_A << endl;
}int main() {test01();system("pause");return 0;
}

在有些情况下,采用多继承是合适的,如对鸭嘴兽来说。鸭嘴兽具备哺乳动物、鸟类和爬行动物的特征。为应对这样的情形,C++允许继承多个基类:
在这里插入图片描述

总结: 多继承中如果父类中出现了同名情况,子类使用时候要加作用域

菱形继承

菱形继承概念:
​ 两个派生类继承同一个基类
​ 又有某个类同时继承者两个派生类
​ 这种继承被称为菱形继承,或者钻石继承

上节介绍说,鸭嘴兽具备哺乳动物、鸟类和爬行动物的特征,这意味着 Platypus 类需要继承Mammal、Bird 和Reptile。然而,这些类都从同一个类—Animal 派生而来。

在这里插入图片描述
❌继承问题
在继承层次结构中,继承多个从同一个类派生而来的基类时,如果这些基类没有采用虚继承,将导致二义性。这种二义性被称为菱形问题(Diamond Problem)。
其中的“菱形”可能源自类图的形状(如果使用直线和斜线表示 Platypus 经由 Mammal、Bird 和 Reptile 与 Animal 建立的关系,将形成一个菱形)。

#include <iostream> 1: using namespace std; 2: 3: class Animal 4: { 5: public: 6:		 Animal() 7: 	{ 8: 		cout << "Animal constructor" << endl; 9: 	} 
10: 
11: // sample member 
12: int age; 
13: }; 
14: 
15: class Mammal:public virtual Animal 
16: { 
17: }; 
18: 
19: class Bird:public virtual Animal 
20: { 
21: }; 
22: 
23: class Reptile:public virtual Animal 
24: { 
25: }; 
26: 
27: class Platypus final:public Mammal, public Bird, 	public Reptile 
28: { 
29: public: 
30: 	Platypus() 
31: 	{ 
32:	 		cout << "Platypus constructor" << endl; 
33: 	}
34: }; 
35: 
36: int main() 
37: { 
38: 	Platypus duckBilledP; 
39: 
40: 		// no compile error as there is only one Animal::age 
41: 	duckBilledP.age = 25; 
42: 
43: 	return 0; 
44: }

输出:

Animal constructor 
Platypus constructor

多态

多态是C++面向对象三大特性之一

多态的基本概念

多态分为两类

  1. 静态多态: 函数重载运算符重载属于静态多态,复用函数名
  2. 动态多态: 派生类虚函数实现运行时多态

静态多态和动态多态区别:

  1. 静态多态的函数地址早绑定–编译阶段确定函数地址
  2. 动态多态的函数地址晚绑定–运行阶段确定函数地址
class Animal
{
public://Speak函数就是虚函数//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。virtual void speak(){cout << "动物在说话" << endl;}
};
class Cat :public Animal
{
public:void speak(){cout << "小猫在说话" << endl;}
};
class Dog :public Animal
{
public:void speak(){cout << "小狗在说话" << endl;}
};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编
void DoSpeak(Animal & animal)
{animal.speak();
}
void test01()
{Cat cat;DoSpeak(cat);Dog dog;DoSpeak(dog);
}
int main() {test01();system("pause");return 0;
}

多态满足条件: 1. 有继承关系2. 子类重写父类中的虚函数
多态使用:父类指针或引用指向子类对象

重写:函数返回值类型 函数名 参数列表 完全一致称为重写

纯虚函数和抽象类

多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容,因此可以将虚函数改为纯虚函数
纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;
当类中有了纯虚函数,这个类也称为抽象类

抽象类特点:

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则属于抽象类
class Base
{
public://纯虚函数//类中只要有一个纯虚函数就称为抽象类//抽象类无法实例化对象//子类必须重写父类中的纯虚函数,否则也属于抽象类virtual void func() = 0;
};
class Son :public Base
{
public:virtual void func() {cout << "func调用" << endl;};
};
void test01()
{Base * base = NULL;//base = new Base; // 错误,抽象类无法实例化对象base = new Son;base->func();delete base;//记得销毁
}int main() {test01();system("pause");return 0;
}

虚析构和纯虚析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方法:将父类中的析构函数改为虚析构或者纯虚析构

虚析构和纯虚析构共性:

  • 可以解决父类指针是否子类对象
  • 都需要有具备的函数实现

虚析构和纯虚析构区别:
如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;

类名::~类名(){}

class Animal {
public:Animal(){cout << "Animal 构造函数调用!" << endl;}virtual void Speak() = 0;//析构函数加上virtual关键字,变成虚析构函数//virtual ~Animal()//{//	cout << "Animal虚析构函数调用!" << endl;//}virtual ~Animal() = 0;
};Animal::~Animal()
{cout << "Animal 纯虚析构函数调用!" << endl;
}
//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。
class Cat : public Animal {
public:Cat(string name){cout << "Cat构造函数调用!" << endl;m_Name = new string(name);}virtual void Speak(){cout << *m_Name <<  "小猫在说话!" << endl;}~Cat(){cout << "Cat析构函数调用!" << endl;if (this->m_Name != NULL) {delete m_Name;m_Name = NULL;}}
public:string *m_Name;
};
void test01()
{Animal *animal = new Cat("Tom");animal->Speak();//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏//怎么解决?给基类增加一个虚析构函数//虚析构函数就是用来解决通过父类指针释放子类对象delete animal;
}
int main() {tes01();system("pause");return 0;
}

总结:

  1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象
  2. 如果子类没有堆区数据,可不写为虚析构或纯虚析构
  3. 拥有纯虚析构函数的类也属于抽象类

该处使用的url网络请求的数据。

模板

模板就是建立通用的模具,大大提高复用性
模板的特点:

  1. 模板不可以直接使用,它只是一个框架
  2. 模板的通用并不是万能的

函数模板

C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板
C++提供两种模板机制:函数模板类模板

函数模板语法

函数模板作用:
建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

template<typename T>
函数声明或定义

template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母

//交换整型函数
void swapInt(int& a, int& b) {int temp = a;a = b;b = temp;
}
//交换浮点型函数
void swapDouble(double& a, double& b) {double temp = a;a = b;b = temp;
}
//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}
void test01()
{int a = 10;int b = 20;//swapInt(a, b);//利用模板实现交换//1、自动类型推导mySwap(a, b);//2、显示指定类型mySwap<int>(a, b);cout << "a = " << a << endl;cout << "b = " << b << endl;}int main() {test01();system("pause");return 0;
}

总结:

  1. 函数模板利用关键字 template
  2. 使用函数模板有两种方式:自动类型推导、显示指定类型
  3. 模板的目的是为了提高复用性,将类型参数化

函数模板案例

案例:

  • 利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
  • 排序规则从大到小,排序算法为选择排序
  • 分别利用char数组int数组进行测试
template<typename T>
void mySwap(T &a,T &b)
{T temp = a;a = b;b = temp;
}
template<class T>
void mySort(T arr[],int len)
{for (int i = 0; i < len; i++){int max = i; //最大数的下标for (int j = i + 1; j < len; j++){if (arr[max] < arr[j]){max = j;}}if (max != i) //如果最大数的下标不是i,交换两者{mySwap(arr[max], arr[i]);}}
}
void test01()
{//测试char数组char charArr[] = "bdcfeagh";int num = sizeof(charArr) / sizeof(char);mySort(charArr, num);printArray(charArr, num);
}
int main() {test01(); system("pause");return 0;
}

普通函数与函数模板的区别

普通函数与函数模板区别:

  • 普通函数调用时可以发生自动类型转换(隐式类型转换)
  • 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
  • 如果利用显示指定类型的方式,可以发生隐式类型转换
//普通函数
int myAdd01(int a, int b)
{return a + b;
}
//函数模板
template<class T>
T myAdd02(T a, T b)  
{return a + b;
}
//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{int a = 10;int b = 20;char c = 'c';cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型  'c' 对应 ASCII码 99//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}
int main() {test01();system("pause");return 0;
}

普通函数与函数模板的调用规则

  1. 如果函数模板和普通函数都可以实现,优先调用普通函数
  2. 可以通过空模板参数列表强调函数模板
  3. 函数模板也可以发生重载
  4. 如果函数模板可以产生更好的匹配,优先调用函数模板
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{cout << "调用的普通函数" << endl;
}
template<typename T>
void myPrint(T a, T b) 
{ cout << "调用的模板" << endl;
}template<typename T>
void myPrint(T a, T b, T c) 
{ cout << "调用重载的模板" << endl; 
}
void test01()
{//1、如果函数模板和普通函数都可以实现,优先调用普通函数// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到int a = 10;int b = 20;myPrint(a, b); //调用普通函数//2、可以通过空模板参数列表来强制调用函数模板myPrint<>(a, b); //调用函数模板//3、函数模板也可以发生重载int c = 30;myPrint(a, b, c); //调用重载的函数模板//4、 如果函数模板可以产生更好的匹配,优先调用函数模板char c1 = 'a';char c2 = 'b';myPrint(c1, c2); //调用函数模板
}
int main() {test01();system("pause");return 0;
}

类模板

类模板作用:

  • 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。
template<typename T>
#include <string>
//类模板
template<class NameType, class AgeType> 
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};
void test01()
{// 指定NameType 为string类型,AgeType 为 int类型Person<string, int>P1("孙悟空", 999);P1.showPerson();
}
int main() {test01();system("pause");return 0;
}

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板

类模板与函数模板区别

类模板与函数模板区别主要有两点:

  1. 类模板没有自动类型推导的使用方式
  2. 类模板在模板参数列表中可以有默认参数
#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};
//1、类模板没有自动类型推导的使用方式
void test01()
{// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板p.showPerson();
}
//2、类模板在模板参数列表中可以有默认参数
void test02()
{Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数p.showPerson();
}
int main() {test01();test02();system("pause");return 0;
}

总结:

  • 类模板使用只能用显示指定类型方式
  • 类模板中的模板参数列表可以有默认参数

类模板中成员函数创建时机

类模板中成员函数和普通类中成员函数创建时机是有区别的:

  • 普通类中的成员函数一开始就可以创建
  • 类模板中的成员函数在调用时才创建
class Person1
{
public:void showPerson1(){cout << "Person1 show" << endl;}
};
class Person2
{
public:void showPerson2(){cout << "Person2 show" << endl;}
};
template<class T>
class MyClass
{
public:T obj;//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成void fun1() { obj.showPerson1(); }void fun2() { obj.showPerson2(); }};
void test01()
{MyClass<Person1> m;m.fun1();//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}
int main() {test01();system("pause");return 0;
}

类模板对象做函数参数

  • 类模板实例化出的对象,向函数传参的方式

一共有三种传入方式:

  1. 指定传入的类型 — 直接显示对象的数据类型
  2. 参数模板化 — 将对象中的参数变为模板进行传递
  3. 整个类模板化 — 将这个对象类型 模板化进行传递
#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};
//1、指定传入的类型
void printPerson1(Person<string, int> &p) 
{p.showPerson();
}
void test01()
{Person <string, int >p("孙悟空", 100);printPerson1(p);
}
//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{p.showPerson();cout << "T1的类型为: " << typeid(T1).name() << endl;cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{Person <string, int >p("猪八戒", 90);printPerson2(p);
}
//3、整个类模板化
template<class T>
void printPerson3(T & p)
{cout << "T的类型为: " << typeid(T).name() << endl;p.showPerson();
}
void test03()
{Person <string, int >p("唐僧", 30);printPerson3(p);
}
int main() {test01();test02();test03();system("pause");return 0;
}

类模板与继承

当类模板碰到继承时,需要注意一下几点:

  • 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
  • 如果不指定,编译器无法给子类分配内存
  • 如果想灵活指定出父类中T的类型,子类也需变为类模板

示例:

template<class T>
class Base
{T m;
};
//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};
void test01()
{Son c;
}
//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:Son2(){cout << typeid(T1).name() << endl;cout << typeid(T2).name() << endl;}
};
void test02()
{Son2<int, char> child1;
}
int main() {test01();test02();system("pause");return 0;
}

总结:如果父类是类模板,子类需要指定出父类中T的数据类型

类模板成员函数类外实现

学习目标:能够掌握类模板中的成员函数类外实现

示例:

#include <string>//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
public://成员函数类内声明Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};
//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}
//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
void test01()
{Person<string, int> p("Tom", 20);p.showPerson();
}
int main() {test01();system("pause");return 0;
}

总结:类模板中成员函数类外实现时,需要加上模板参数列表

类模板分文件编写

学习目标:

  • 掌握类模板成员函数分文件编写产生的问题以及解决方式
    问题:
  • 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到

解决:

  • 解决方式1:直接包含.cpp源文件
  • 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制

示例:
person.hpp中代码:

#pragma once
#include <iostream>
using namespace std;
#include <string>template<class T1, class T2>
class Person {
public:Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};
//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}
//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

类模板分文件编写.cpp中代码

#include<iostream>
using namespace std;
//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件
//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"
void test01()
{Person<string, int> p("Tom", 10);p.showPerson();
}
int main() {test01();system("pause");return 0;
}

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp

类模板与友元

学习目标:

  • 掌握类模板配合友元函数的类内和类外实现
  • 全局函数类内实现 - 直接在类内声明友元即可
  • 全局函数类外实现 - 需要提前让编译器知道全局函数的存在

示例:

#include <string>
//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;
//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p); 
template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}
template<class T1, class T2>
class Person
{//1、全局函数配合友元   类内实现friend void printPerson(Person<T1, T2> & p){cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;}//全局函数配合友元  类外实现friend void printPerson2<>(Person<T1, T2> & p);
public:Person(T1 name, T2 age){this->m_Name = name;this->m_Age = age;}
private:T1 m_Name;T2 m_Age;
};
//1、全局函数在类内实现
void test01()
{Person <string, int >p("Tom", 20);printPerson(p);
}
//2、全局函数在类外实现
void test02()
{Person <string, int >p("Jerry", 30);printPerson2(p);
}
int main() {//test01();test02();system("pause");return 0;
}

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别

类模板案例

案例描述: 实现一个通用的数组类,要求如下:

  • 可以对内置数据类型以及自定义数据类型的数据进行存储
  • 将数组中的数据存储到堆区
  • 构造函数中可以传入数组的容量
  • 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
  • 提供尾插法和尾删法对数组中的数据进行增加和删除
  • 可以通过下标的方式访问数组中的元素
  • 可以获取数组中当前元素个数和数组的容量

示例:

myArray.hpp中代码

#pragma once
#include <iostream>
using namespace std;template<class T>
class MyArray
{
public://构造函数MyArray(int capacity){this->m_Capacity = capacity;this->m_Size = 0;pAddress = new T[this->m_Capacity];}//拷贝构造MyArray(const MyArray & arr){this->m_Capacity = arr.m_Capacity;this->m_Size = arr.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++){//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,// 普通类型可以直接= 但是指针类型需要深拷贝this->pAddress[i] = arr.pAddress[i];}}//重载= 操作符  防止浅拷贝问题MyArray& operator=(const MyArray& myarray) {if (this->pAddress != NULL) {delete[] this->pAddress;this->m_Capacity = 0;this->m_Size = 0;}this->m_Capacity = myarray.m_Capacity;this->m_Size = myarray.m_Size;this->pAddress = new T[this->m_Capacity];for (int i = 0; i < this->m_Size; i++) {this->pAddress[i] = myarray[i];}return *this;}//重载[] 操作符  arr[0]T& operator [](int index){return this->pAddress[index]; //不考虑越界,用户自己去处理}//尾插法void Push_back(const T & val){if (this->m_Capacity == this->m_Size){return;}this->pAddress[this->m_Size] = val;this->m_Size++;}//尾删法void Pop_back(){if (this->m_Size == 0){return;}this->m_Size--;}//获取数组容量int getCapacity(){return this->m_Capacity;}//获取数组大小int	getSize(){return this->m_Size;}//析构~MyArray(){if (this->pAddress != NULL){delete[] this->pAddress;this->pAddress = NULL;this->m_Capacity = 0;this->m_Size = 0;}}
private:T * pAddress;  //指向一个堆空间,这个空间存储真正的数据int m_Capacity; //容量int m_Size;   // 大小
};

类模板案例—数组类封装.cpp中

#include "myArray.hpp"
#include <string>void printIntArray(MyArray<int>& arr) {for (int i = 0; i < arr.getSize(); i++) {cout << arr[i] << " ";}cout << endl;
}
//测试内置数据类型
void test01()
{MyArray<int> array1(10);for (int i = 0; i < 10; i++){array1.Push_back(i);}cout << "array1打印输出:" << endl;printIntArray(array1);cout << "array1的大小:" << array1.getSize() << endl;cout << "array1的容量:" << array1.getCapacity() << endl;cout << "--------------------------" << endl;MyArray<int> array2(array1);array2.Pop_back();cout << "array2打印输出:" << endl;printIntArray(array2);cout << "array2的大小:" << array2.getSize() << endl;cout << "array2的容量:" << array2.getCapacity() << endl;
}
//测试自定义数据类型
class Person {
public:Person() {} Person(string name, int age) {this->m_Name = name;this->m_Age = age;}
public:string m_Name;int m_Age;
};
void printPersonArray(MyArray<Person>& personArr)
{for (int i = 0; i < personArr.getSize(); i++) {cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;}}
void test02()
{//创建数组MyArray<Person> pArray(10);Person p1("孙悟空", 30);Person p2("韩信", 20);Person p3("妲己", 18);Person p4("王昭君", 15);Person p5("赵云", 24);//插入数据pArray.Push_back(p1);pArray.Push_back(p2);pArray.Push_back(p3);pArray.Push_back(p4);pArray.Push_back(p5);printPersonArray(pArray);cout << "pArray的大小:" << pArray.getSize() << endl;cout << "pArray的容量:" << pArray.getCapacity() << endl;
}
int main() {//test01();test02();system("pause");return 0;
}

总结:能够利用所学知识点实现通用的数组


总结

剩下的内容中剩下STL,常用的容器等内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/150710.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

傅里叶变换及其应用笔记

傅里叶变换 预备知识学习路线扼要描述两者之间的共同点&#xff1a;线性运算周期性现象对称性与周期性的关系周期性 预备知识 学习路线 从傅里叶级数&#xff0c;过度到傅里叶变换 扼要描述 傅里叶级数&#xff08;Fourier series&#xff09;&#xff0c;几乎等同于周期性…

springboot中药材进存销管理系统

基于springbootvue实现的中药材进存销管理系统 &#xff08;源码L文ppt&#xff09;4-079 4 系统总体设计 4.1系统功能结构设计图 根据需求说明设计系统各功能模块。采用模块化设计方法实现一个复杂结构进行简化&#xff0c;分成一个个小的容易解决的板块&#xff0c;然…

二叉树进阶oj题【二叉树相关10道oj题的解析和代码实现】

目录 二叉树进阶oj题1.根据二叉树创建字符串2.二叉树的层序遍历3.二叉树的层序遍历 II4.二叉树的最近公共祖先5.二叉搜索树和双向链表6.从前序与中序遍历序列构造二叉树7.从中序和后序遍历序列来构造二叉树8.二叉树的前序遍历&#xff0c;非递归迭代实现9.二叉树中序遍历 &…

从0新建一个微信小程序实现一个简单跳转

首先 1.从这里下载开发工具 https://developers.weixin.qq.com/miniprogram/dev/framework/quickstart/getstart.htm 2. 等下载完毕后 创建一个空白项目 在pages目录下右键创建一个page : testUI,这时候会生成四个文件 新建一个文件夹 testUI 给他们放一起 3.增加一个按钮 …

SaaS(Software as a Service)软件的主流技术架构

在当今数字化时代&#xff0c;SaaS&#xff08;Software as a Service&#xff0c;软件即服务&#xff09;软件以其灵活、高效和成本效益高的特点&#xff0c;成为企业信息化建设的首选。为了实现SaaS软件的稳定、可靠和高效运行&#xff0c;其技术架构的设计显得尤为重要。本文…

【好书推荐】《架构真意:企业级应用架构设计方法论与实践》

在快速迭代的互联网和大数据时代&#xff0c;企业级应用架构设计成为了企业技术创新的基石。《架构真意&#xff1a;企业级应用架构设计方法论与实践》一书&#xff0c;由范钢和孙玄两位资深架构师联袂撰写&#xff0c;不仅为工程师、架构师和管理者提供了一套深入且实用的架构…

Humanoid 3D Charactor_P08_Federica

3D模型(人形装备)女孩 “P08_联邦” 内容仅为3D人物模型。 图片中的背景和家具不包括在内。 由Blender制作 包括: 1. 人形机器人3D模型和材质。 2. “Unity-chan!”着色器。 性别:女 装备:人形 皮肤网格:4个骨骼权重 多边形: 20000~40000 纹理分辨率:2K纹理 混合形状:…

828华为云征文|Flexus X实例安装ShowDoc文档管理工具

828华为云征文&#xff5c;Flexus X实例安装showdoc文档管理工具 引言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 主要使用场景 二、购买Flexus云服务器X实例2.1 购买规格参考2.2 查看Flexus云服务器X实例状态 三、远程连接Flexus云服务器X实例3.1 重置密码3.…

页面在移动设备上显示不正常的原因及解决方案

聚沙成塔每天进步一点点 本文回顾 ⭐ 专栏简介页面在移动设备上显示不正常的原因及解决方案1. 缺少 viewport 元标签1.1 问题描述1.2 解决方案1.3 注意事项 2. 响应式设计未实现或设计不当2.1 问题描述2.2 解决方案示例&#xff1a;媒体查询的使用 2.3 常见的媒体查询断点 3. 固…

【C++取经之路】红黑树封装set

目录 前言 红黑树的结构 红黑树的结点定义 红黑树的迭代器 红黑树 封装set 前言 本文参考《STL源码剖析》中SGI STL对红黑树的结构设计&#xff0c;涉及到红黑树迭代器的实现等&#xff0c;所以在读这篇文章之前&#xff0c;我希望你对红黑树有一定的了解&#xff0c;比如…

网站建设中,常用的后台技术有哪些,他们分别擅长做什么网站平台

PHP、Python、JavaScript、Ruby、Java和.NET各自适用于不同类型的网站平台。以下是对这些编程语言适用场景的具体介绍&#xff1a; PHP Web开发&#xff1a;PHP是一种广泛使用的开源服务器端脚本语言&#xff0c;特别适合Web开发。全球有超过80%的网站使用PHP作为服务器端编程语…

SuperMap GIS基础产品FAQ集锦(20240923)

一、SuperMap iDesktopX 问题1&#xff1a;请问一下&#xff0c;桌面11i导入功能好像有bug&#xff0c;shp导入到pg库中丢数据&#xff0c;明明60多万条但是导入进去只剩13万条了&#xff0c;这个哪位同事能处理一下呢 11.2.0 【问题原因】2个问题原因&#xff1a;1、序列已…

两张图讲透软件测试实验室认证技术体系与质量管理体系

软件测试实验室在申请相关资质认证时&#xff0c;需要建立一套完整的质量管理体系和过硬的技术体系。这其中涉及到的要素非常繁杂&#xff0c;工作量非常庞大&#xff0c;为了帮助大家快速梳理清楚软件测试实验室认证过程中质量管理体系和技术体系的建设思路&#xff0c;我们梳…

HttpServletRequest简介

HttpServletRequest是什么&#xff1f; HttpServletRequest是一个接口&#xff0c;其父接口是ServletRequest&#xff1b;HttpServletRequest是Tomcat将请求报文转换封装而来的对象&#xff0c;在Tomcat调用service方法时传入&#xff1b;HttpServletRequest代表客户端发来的请…

普渡大学和麻省理工学院合作开发集成视触觉指尖传感器的5自由度抓手

虽然机器人已经开始在现代制造业、医疗、服务业等领域进行渗透&#xff0c;但对于机器人尤其是机械臂的操作能力&#xff0c;仍然有很大的提升空间&#xff0c;传统多指机器人手虽然能够实现复杂的操作任务&#xff0c;但其高度冗余性也带来了不必要的复杂性。近日来自普渡大学…

使用Kolors生成图像:从部署到生成

文章目录 1. Kolors模型的背景什么是Kolors&#xff1f;运行Kolors需要的条件 2. 在DAMODEL上准备环境创建计算实例 3. 部署Kolors模型安装Anaconda下载Kolors代码创建虚拟环境并安装依赖 4. 开始生成你的图像5. 个人体验与总结一些建议&#xff1a; 最近我接触到了一个非常有趣…

【数学分析笔记】第3章第4节闭区间上的连续函数(1)

3. 函数极限与连续函数 3.4 闭区间上的连续函数 3.4.1 有界性定理 【定理3.4.1】 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续&#xff0c;则 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上有界。 【证】用反证法&#xff0c;假设 f ( x ) f(x) f(x)在 [ …

【day20240925】常见数据集科普

文章目录 常见数据集Fashion-MNISTCIFAR-10CIFAR-100IMDbTiny Imagenet 常见数据集 Fashion-MNIST CIFAR-10 CIFAR-100 IMDb Tiny-ImageNet Fashion-MNIST Fashion-MNIST数据集涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。它的大小、格式和训练集 / 测试集划分与原…

【AIGC】ChatGPT提示词解析:如何生成爆款标题、节日热点文案与完美文字排版

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;情绪化的吸睛爆款标题提示词使用方法 &#x1f4af;紧跟节日热点生成文案提示词使用方法 &#x1f4af;高效文字排版技巧提示词使用方法 &#x1f4af;小结 &#x1f4af…

揭秘“隐形杀手”:谐波对医院电网的隐形危害

谐波主要由非线性负载设备如医疗器械、节能照明、变频调速装置等产生。在医院的复杂配电网络中&#xff0c;这些谐波成分如同细小的波纹&#xff0c;不断叠加&#xff0c;最终扰乱了电能的纯净性&#xff0c;导致电能品质下降&#xff0c;电力供应的可靠性也随之降低。 医院里…