【可变模板参数】

文章目录

  • 可变参数模板的概念
  • 可变参数模板的定义方式
  • 参数包的展开方式
      • 递归展开参数包
      • 逗号表达式展开参数包
  • STL容器中的emplace相关接口函数

可变参数模板的概念

可变参数模板是C++11新增的最强大的特性之一,它对参数高度泛化,能够让我们创建可以接受可变参数的函数模板和类模板。

  • 在C++11之前,类模板和函数模板中只能包含固定数量的模板参数,可变模板参数无疑是一个巨大的改进,但由于可变参数模板比较抽象,因此使用起来需要一定的技巧。
  • 在C++11之前其实也有可变参数的概念,比如printf函数就能够接收任意多个参数,但这是函数参数的可变参数,并不是模板的可变参数。

说明一下:本篇博客只讲解函数模板的可变参数。

可变参数模板的定义方式

函数的可变参数模板定义方式如下:

template<class …Args>
返回类型 函数名(Args… args)
{
  //函数体
}
例如:

template<class ...Args>
void ShowList(Args... args)
{}

说明一下:

  • 模板参数Args前面有省略号,代表它是一个可变模板参数,我们把带省略号的参数称为参数包,参数包里面可以包含0到N ( N ≥ 0 ) N(N\geq 0)N(N≥0)个模板参数,而args则是一个函数形参参数包。
  • 模板参数包Args和函数形参参数包args的名字可以任意指定,并不是说必须叫做Args和args。

现在调用ShowList函数时就可以传入任意多个参数了,并且这些参数可以是不同类型的。比如:

int main()
{ShowList();ShowList(1);ShowList(1, 'A');ShowList(1, 'A', string("hello"));return 0;
}

我们可以在函数模板中通过sizeof计算参数包中参数的个数。比如:

int main()
{ShowList();ShowList(1);ShowList(1, 'A');ShowList(1, 'A', string("hello"));return 0;
}

我们可以在函数模板中通过sizeof计算参数包中参数的个数。比如:

template<class ...Args>
void ShowList(Args... args)
{cout << sizeof...(args) << endl; //获取参数包中参数的个数
}

但是我们无法直接获取参数包中的每个参数,只能通过展开参数包的方式来获取,这是使用可变参数模板的一个主要特点,也是最大的难点。

特别注意,语法并不支持使用args[i]的方式来获取参数包中的参数。比如:

template<class ...Args>
void ShowList(Args... args)
{//错误示例:for (int i = 0; i < sizeof...(args); i++){cout << args[i] << " "; //打印参数包中的每个参数}cout << endl;
}

因此要获取参数包中的各个参数,只能通过展开参数包的方式来获取,一般我们会通过递归或逗号表达式来展开参数包。

参数包的展开方式

递归展开参数包

递归展开参数包的方式如下:

  • 给函数模板增加一个模板参数,这样就可以从接收到的参数包中分离出一个参数出来。
  • 在函数模板中递归调用该函数模板,调用时传入剩下的参数包。
  • 如此递归下去,每次分离出参数包中的一个参数,直到参数包中的所有参数都被取出来。

比如我们要打印调用函数时传入的各个参数,那么函数模板可以这样编写:

//展开函数
template<class T, class ...Args>
void ShowList(T value, Args... args)
{cout << value << " "; //打印分离出的第一个参数ShowList(args...);    //递归调用,将参数包继续向下传
}

这时我们面临的问题就是,如何终止函数的递归调用。

编写无参的递归终止函数

我们可以在刚才的基础上,再编写一个无参的递归终止函数,该函数的函数名与展开函数的函数名相同。如下

//递归终止函数
void ShowList()
{cout << endl;
}
//展开函数
template<class T, class ...Args>
void ShowList(T value, Args... args)
{cout << value << " "; //打印分离出的第一个参数ShowList(args...);    //递归调用,将参数包继续向下传
}

这样一来,当递归调用ShowList函数模板时,如果传入的参数包中参数的个数为0,那么就会匹配到这个无参的递归终止函数,这样就结束了递归。

  • 但如果外部调用ShowList函数时就没有传入参数,那么就会直接匹配到无参的递归终止函数。
  • 而我们本意是想让外部调用ShowList函数时匹配的都是函数模板,并不是让外部调用时直接匹配到这个递归终止函数

鉴于此,我们可以将展开函数和递归调用函数的函数名改为ShowListArg,然后重新编写一个ShowList函数模板,该函数模板的函数体中要做的就是调用ShowListArg函数展开参数包。比如:

//递归终止函数
void ShowListArg()
{cout << endl;
}
//展开函数
template<class T, class ...Args>
void ShowListArg(T value, Args... args)
{cout << value << " "; //打印传入的若干参数中的第一个参数ShowListArg(args...); //将剩下参数继续向下传
}
//供外部调用的函数
template<class ...Args>
void ShowList(Args... args)
{ShowListArg(args...);
}

这时无论外部调用时传入多少个参数,最终匹配到的都是同一个函数了。

编写带参的递归终止函数

除了编写无参的递归终止函数,也可以编写带参数的递归终止函数来终止递归,比如这里编写带一个参数的递归终止函数:

//递归终止函数
template<class T>
void ShowList(T&& t)
{cout << t << endl;
}
//展开函数
template<class T, class ...Args>
void ShowListArg(T value, Args... args)
{cout << value << " "; //打印传入的若干参数中的第一个参数ShowList(args...);    //将剩下参数继续向下传
}
//供外部调用的函数
template<class ...Args>
void ShowList(Args... args)
{ShowListArg(args...);
}

这样一来,在递归调用过程中,如果传入的参数包中参数的个数为1,那么就会匹配到这个递归终止函数,这样也就结束了递归。但是需要注意,这里的递归调用函数需要写成函数模板,因为我们并不知道最后一个参数是什么类型的。

但该方法有一个弊端就是,我们在调用ShowList函数时必须至少传入一个参数,否则就会报错。因为此时无论是调用递归终止函数还是展开函数,都需要至少传入一个参数。

判断参数包中参数的个数(不可行!)

既然我们可以通过sizeof计算出参数包中参数的个数,那我们能不能在ShowList函数中设置一个判断,当参数包中参数个数为0时就终止递归呢?比如:

//错误示例
template<class T, class ...Args>
void ShowList(T value, Args... args)
{cout << value << " "; //打印传入的若干参数中的第一个参数if (sizeof...(args) == 0){return;}ShowList(args...);    //将剩下参数继续向下传
}

这种方式是不可行的,原因如下:

  • 函数模板并不能调用,函数模板需要在编译时根据传入的实参类型进行推演,生成对应的函数,这个生成的函数才能够被调用。
  • 而这个推演过程是在编译时进行的,当推演到参数包args中参数个数为0时,还需要将当前函数推演完毕,这时就会继续推演传入0个参数时的ShowList函数,此时就会产生报错,因为ShowList函数要求至少传入一个参数。
  • 这里编写的if判断是在代码编译结束后,运行代码时才会所走的逻辑,也就是运行时逻辑,而函数模板的推演是一个编译时逻辑。

逗号表达式展开参数包

通过列表获取参数包中的参数

数组可以通过列表进行初始化,比如:

int a[] = {1,2,3,4}

除此之外,如果参数包中各个参数的类型都是整型,那么也可以把这个参数包放到列表当中初始化这个整型数组,此时参数包中参数就放到数组中了。比如:

//展开函数
template<class ...Args>
void ShowList(Args... args)
{int arr[] = { args... }; //列表初始化//打印参数包中的各个参数for (auto e : arr){cout << e << " ";}cout << endl;
}

这时调用ShowList函数时就可以传入多个整型参数了。比如:

int main()
{ShowList(1);ShowList(1, 2);ShowList(1, 2, 3);return 0;
}

但C++并不像Python这样的语言,C++规定一个容器中存储的数据类型必须是相同的,因此如果这样写的话,那么调用ShowList函数时传入的参数只能是整型的,并且还不能传入0个参数,因为数组的大小不能为0,因此我们还需要在此基础上借助逗号表达式来展开参数包。

通过逗号表达式展开参数包

虽然我们不能用不同类型的参数去初始化一个整型数组,但我们可以借助逗号表达式。

  • 逗号表达式会从左到右依次计算各个表达式,并且将最后一个表达式的值作为返回值进行返回。
  • 将逗号表达式的最后一个表达式设置为一个整型值,确保逗号表达式返回的是一个整型值。
  • 将处理参数包中参数的动作封装成一个函数,将该函数的调用作为逗号表达式的第一个表达式。

这样一来,在执行逗号表达式时就会先调用处理函数处理对应的参数,然后再将逗号表达式中的最后一个整型值作为返回值来初始化整型数组。比如:

//处理参数包中的每个参数
template<class T>
void PrintArg(const T& t)
{cout << t << " ";
}
//展开函数
template<class ...Args>
void ShowList(Args... args)
{int arr[] = { (PrintArg(args), 0)... }; //列表初始化+逗号表达式cout << endl;
}

说明一下:

  • 我们这里要做的就是打印参数包中的各个参数,因此处理函数当中要做的就是将传入的参数进行打印即可。
  • 可变参数的省略号需要加在逗号表达式外面,表示需要将逗号表达式展开,如果将省略号加在args的后面,那么参数包将会被展开后全部传入PrintArg函数,代码中的{(PrintArg(args), 0)…}将会展开成{(PrintArg(arg1), 0), (PrintArg(arg2), 0), (PrintArg(arg3), 0), etc…}。

这时调用ShowList函数时就可以传入多个不同类型的参数了,但调用时仍然不能传入0个参数,因为数组的大小不能为0,如果想要支持传入0个参数,也可以写一个无参的ShowList函数。比如:

//支持无参调用
void ShowList()
{cout << endl;
}
//处理函数
template<class T>
void PrintArg(const T& t)
{cout << t << " ";
}
//展开函数
template<class ...Args>
void ShowList(Args... args)
{int arr[] = { (PrintArg(args), 0)... }; //列表初始化+逗号表达式cout << endl;
}

实际上我们也可以不用逗号表达式,因为这里的问题就是初始化整型数组时必须用整数,那我们可以将处理函数的返回值设置为整型,然后用这个返回值去初始化整型数组也是可以的。比如:

//支持无参调用
void ShowList()
{cout << endl;
}
//处理函数
template<class T>
int PrintArg(const T& t)
{cout << t << " ";return 0;
}
//展开函数
template<class ...Args>
void ShowList(Args... args)
{int arr[] = { PrintArg(args)... }; //列表初始化cout << endl;
}

STL容器中的emplace相关接口函数

emplace版本的插入接口

C++11标准给STL中的容器增加emplace版本的插入接口,比如list容器的push_front、push_back和insert函数,都增加了对应的emplace_front、emplace_back和emplace函数。如下:
在这里插入图片描述
这些emplace版本的插入接口支持模板的可变参数,比如list容器的emplace_back函数的声明如下:
在这里插入图片描述
注意: emplace系列接口的可变模板参数类型都带有“&&”,这个表示的是万能引用,而不是右值引用。

emplace系列接口的使用方式

emplace系列接口的使用方式与容器原有的插入接口的使用方式类似,但又有一些不同之处。

以list容器的emplace_back和push_back为例:

  1. 调用push_back函数插入元素时,可以传入左值对象或者右值对象,也可以使用列表进行初始化。
  2. 调用emplace_back函数插入元素时,也可以传入左值对象或者右值对象,但不可以使用列表进行初始化。
  3. 除此之外,emplace系列接口最大的特点就是,插入元素时可以传入用于构造元素的参数包。
int main()
{list<pair<int, string>> mylist;pair<int, string> kv(10, "111");mylist.push_back(kv);                              //传左值mylist.push_back(pair<int, string>(20, "222"));    //传右值mylist.push_back({ 30, "333" });                   //列表初始化mylist.emplace_back(kv);                           //传左值mylist.emplace_back(pair<int, string>(40, "444")); //传右值mylist.emplace_back(50, "555");                    //传参数包return 0;
}

emplace系列接口的工作流程

  1. 先通过空间配置器为新结点获取一块内存空间,注意这里只会开辟空间,不会自动调用构造函数对这块空间进行初始化。
  2. 然后调用allocator_traits::construct函数对这块空间进行初始化,调用该函数时会传入这块空间的地址和用户传入的参数(需要经过完美转发)。
  3. 在allocator_traits::construct函数中会使用定位new表达式,显示调用构造函数对这块空间进行初始化,调用构造函数时会传入用户传入的参数(需要经过完美转发)。
  4. 将初始化好的新结点插入到对应的数据结构当中,比如list容器就是将新结点插入到底层的双链表中。

emplace系列接口的意义

  • 如果调用emplace系列接口时传入的是左值对象,那么首先需要先在此之前调用构造函数实例化出一个左值对象,最终在使用定位new表达式调用构造函数对空间进行初始化时,会匹配到拷贝构造函数。
  • 如果调用emplace系列接口时传入的是右值对象,那么就需要在此之前调用构造函数实例化出一个右值对象,最终在使用定位new表达式调用构造函数对空间进行初始化时,就会匹配到移动构造函数。
  • 如果调用emplace系列接口时传入的是参数包,那就可以直接调用函数进行插入,并且最终在使用定位new表达式调用构造函数对空间进行初始化时,匹配到的是构造函数。

总结一下:

  • 传入左值对象,需要调用构造函数+拷贝构造函数。
  • 传入右值对象,需要调用构造函数+移动构造函数。
  • 传入参数包,只需要调用构造函数。

当然,这里的前提是容器中存储的元素所对应的类,是一个需要深拷贝的类,并且该类实现了移动构造函数。否则调用emplace系列接口时,传入左值对象和传入右值对象的效果都是一样的,都需要调用一次构造函数和一次拷贝构造函数。

实际emplace系列接口的一部分功能和原有各个容器插入接口是重叠的,因为容器原有的push_back、push_front和insert函数也提供了右值引用版本的接口,如果调用这些接口时如果传入的是右值对象,那么最终也是会调用对应的移动构造函数进行资源的移动的。

emplace接口的意义:

  • emplace系列接口最大的特点就是支持传入参数包,用这些参数包直接构造出对象,这样就能减少一次拷贝,这就是为什么有人说emplace系列接口更高效的原因。
  • emplace系列接口真正高效的情况是传入参数包的时候,直接通过参数包构造出对象,避免了中途的一次拷贝。

验证

如果要验证我们上述对emplace系列接口的说法,需要借助一个深拷贝的类,下面模拟实现了一个简化版的string类,类当中只编写了我们需要用到的成员函数。

namespace zpl
{class string{public://构造函数string(const char* str = ""){cout << "string(const char* str) -- 构造函数" << endl;_size = strlen(str); //初始时,字符串大小设置为字符串长度_capacity = _size; //初始时,字符串容量设置为字符串长度_str = new char[_capacity + 1]; //为存储字符串开辟空间(多开一个用于存放'\0')strcpy(_str, str); //将C字符串拷贝到已开好的空间}//交换两个对象的数据void swap(string& s){//调用库里的swap::swap(_str, s._str); //交换两个对象的C字符串::swap(_size, s._size); //交换两个对象的大小::swap(_capacity, s._capacity); //交换两个对象的容量}//拷贝构造函数(现代写法)string(const string& s):_str(nullptr), _size(0), _capacity(0){cout << "string(const string& s) -- 拷贝构造" << endl;string tmp(s._str); //调用构造函数,构造出一个C字符串为s._str的对象swap(tmp); //交换这两个对象}//移动构造string(string&& s):_str(nullptr), _size(0), _capacity(0){cout << "string(string&& s) -- 移动构造" << endl;swap(s);}//拷贝赋值函数(现代写法)string& operator=(const string& s){cout << "string& operator=(const string& s) -- 深拷贝" << endl;string tmp(s); //用s拷贝构造出对象tmpswap(tmp); //交换这两个对象return *this; //返回左值(支持连续赋值)}//移动赋值string& operator=(string&& s){cout << "string& operator=(string&& s) -- 移动赋值" << endl;swap(s);return *this;}//析构函数~string(){//delete[] _str;  //释放_str指向的空间_str = nullptr; //及时置空,防止非法访问_size = 0;      //大小置0_capacity = 0;  //容量置0}private:char* _str;size_t _size;size_t _capacity;};
}

由于我们在string的构造函数、拷贝构造函数和移动构造函数当中均打印了一条提示语句,因此我们可以通过控制台输出来判断这些函数是否被调用。

下面我们用一个容器来存储模拟实现的string,并以不同的传参形式调用emplace系列函数。比如:

int main()
{list<pair<int, cl::string>> mylist;pair<int, cl::string> kv(1, "one");mylist.emplace_back(kv);                              //传左值cout << endl;mylist.emplace_back(pair<int, cl::string>(2, "two")); //传右值cout << endl;mylist.emplace_back(3, "three");                      //传参数包return 0;
}

运行结果如下:
在这里插入图片描述
说明一下:

  • 模拟实现string的拷贝构造函数时复用了构造函数,因此在调用string拷贝构造的后面会紧跟着调用一次构造函数。
  • 为了更好的体现出参数包的概念,因此这里list容器中存储的元素类型是pair,我们是通过观察string对象的处理过程来判断pair的处理过程的。

这里也可以以不同的传参方式调用push_back函数,顺便验证一下容器原有的插入函数的执行逻辑。比如:

int main()
{list<pair<int, cl::string>> mylist;pair<int, cl::string> kv(1, "one");mylist.push_back(kv);                              //传左值cout << endl;mylist.push_back(pair<int, cl::string>(2, "two")); //传右值cout << endl;mylist.push_back({ 3, "three" });                  //列表初始化return 0;
}

运行结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/147284.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

C++ | Leetcode C++题解之第423题从英文中重建数字

题目&#xff1a; 题解&#xff1a; class Solution { public:string originalDigits(string s) {unordered_map<char, int> c;for (char ch: s) {c[ch];}vector<int> cnt(10);cnt[0] c[z];cnt[2] c[w];cnt[4] c[u];cnt[6] c[x];cnt[8] c[g];cnt[3] c[h] - …

C++初阶学习——模版进阶

1. 非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成…

GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model

GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model 1.介绍2.相关工作3.方法3.1预备知识3.2整体架构3.3调制组Mamba层3.3.1视觉单一选择性扫描&#xff08;Visual Single Selective Scan&#xff0c;简称VSSS&#xff09;块3.3.2分组Mamba操作3.3.3…

Vue 计算属性(computed)的使用和优化

前言 Vue 的计算属性&#xff08;computed&#xff09;是 Vue.js 中非常重要的一个概念。它允许你在 Vue 组件中定义一些计算逻辑&#xff0c;这些逻辑会依赖于 Vue 的响应式数据&#xff0c;并且具有缓存机制&#xff0c;只有在依赖数据发生改变时才会重新计算&#xff0c;从…

蓝桥杯—STM32G431RBT6(ADC数模转换,从原理到应用)

一、什么是ADC&#xff1f; ADC&#xff08;Analog-to-Digital Converter&#xff09;即模数转换器。它是一种将模拟信号转换为数字信号的电子器件。在电子系统中&#xff0c;ADC 起着至关重要的作用&#xff0c;它能将连续变化的模拟量&#xff08;如电压、电流等&#xff09;…

ps学习。

有大量的图要扣&#xff0c;淘宝5-15块扣一个&#xff0c;尽管蛮便宜的&#xff0c;但是架不住量大啊&#xff0c;还是好好ps&#xff0c;也能省一大笔钱。 填充 在这里有个油漆桶&#xff0c;一开始也叫渐变色&#xff0c;堆放在一起了&#xff0c;我觉得这不是个好设计。。…

pycharm 使用 translation 插件通过openai进行翻译

pycharm 使用 translation 插件通过openai进行翻译 1. 安装插件2. 配置插件3. 翻译 1. 安装插件 2. 配置插件 3. 翻译 调用 openai 时使用的提示词如下&#xff1a; <|im_start|>system\nYou are a translation engine that can only translate text and cannot interpr…

Vue学习记录之七(组件之间传参)

一、父传子 1、父组件传递 父&#xff1a; App.vue&#xff0c; 通过使用组件 <导入的组件名 :属性名1“” :属性名2“”></导入的组件名>,传递给子组件 传递了一个t字符串类型是不需要v-bind&#xff0c;也就是不需要冒号&#xff0c;非字符串类型的必须加 v-bi…

CTC loss 博客转载

论文地址&#xff1a; https://www.cs.toronto.edu/~graves/icml_2006.pdf 为了对应这个图&#xff0c;我们假设一种符合的模型情况&#xff1a; 英文OCR&#xff0c;37个类别&#xff08;26个小写字母10个汉字空格&#xff09;&#xff0c;最大输出长度8个字符 模型预测结果…

PCL 计算点云的平均密度(方法一)

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff08;长期更新&#xff09; 一、概述 本文将介绍如何计算点云的…

如何避开学习和研究机器人方向无价值的知识节约时间

往昔 这是一篇十年前就想写&#xff0c;但是一直没有实力和勇气落笔的文字。 如今 简约 授之以鱼&#xff0c;不如授之以渔。 啰嗦 机器人方向如何简单判定这个知识是否有价值。 只谈一个方向&#xff0c;就是这个知识点是“死”还是“活”&#xff1f; 什么是“死”&am…

element-ui表格操作大全

一、基础表格展示 数据绑定&#xff1a; 在el-table元素中注入data对象数组&#xff0c;在el-table-column&#xff08;列&#xff09;中使用prop属性来对应对象中的键名&#xff0c;使用label属性定义列名 元素案例内容&#xff1a; <el-table border :data"userL…

举例说明:自然语言处理实战项目

自然语言处理&#xff08;Natural Language Processing, NLP&#xff09;是人工智能领域的一个重要分支&#xff0c;旨在使计算机能够理解、解释和生成人类语言。以下是一些NLP实战项目的示例&#xff1a; 1. 情感分析&#xff08;Sentiment Analysis&#xff09; 项目描述: …

【LLM学习之路】9月16日 第六天

【LLM学习之路】9月16日 第六天 损失函数 L1Loss 可以取平均也可以求和 参数解析 input &#xff08;N&#xff0c;*&#xff09; N是batchsize&#xff0c;星号代表可以是任意维度 不是输入的参数&#xff0c;只是描述数据 target 形状要同上 MSELoss平方差 CrossEntr…

(done) 声音信号处理基础知识(5) (Types of Audio Features for Machine Learning)

参考&#xff1a;https://www.youtube.com/watch?vZZ9u1vUtcIA 声学特征描述了声音&#xff0c;不同特征捕捉声音的不同方面性质 声学特征有助于我们构建智能声学系统 声学特征分类有&#xff1a; 1.抽象等级 2.时域视野 3.音乐的部分 4.信号域 5.机器学习方法 如下图展示…

力扣中等 33.搜索旋转排序数组

文章目录 题目介绍题解 题目介绍 题解 首先用 153. 寻找旋转排序数组中的最小值 的方法&#xff0c;找到 nums 的最小值的下标 i。 然后分类讨论&#xff1a; 如果 target>nums[n−1]&#xff0c;在 [0,i−1] 中二分查找 target。 如果 target≤nums[n−1]&#xff0c;那…

51单片机——独立按键

一、独立按键对应单片机P3管脚&#xff0c;如图 二、按键点亮LED灯 #include <STC89C5xRC.H> void main() { while(1) { if(P300) { P200; } else { P201; } } } 当按键为0时&#xff0c;代表按下&#xff0c;所以当P30按下时&#xff0c;让P20&#xff1d;0&#…

二叉树(二)深度遍历和广度遍历

一、层序遍历 广度优先搜索&#xff1a;使用队列&#xff0c;先进先出 模板&#xff1a; 1、定义返回的result和用于辅助的队列 2、队列初始化&#xff1a; root非空时进队 3、遍历整个队列&#xff1a;大循环while(!que.empty()) 记录每层的size以及装每层结果的变量&a…

leetcode第十三题:罗马数字转整数

罗马数字包含以下七种字符: I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#x…

LeetCode[中等] 215. 数组中的第 K 个最大元素

给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。 思路&#xff1a;基于快排改进的快速…