Hadoop-MapReduce的 原理 | 块和片 | Shuffle 过程 | Combiner

MapReduce的原理

简单版本:

AppMaster: 整个Job任务的核心协调工具
MapTask: 主要用于Map任务的执行
ReduceTask: 主要用于Reduce任务的执行

一个任务提交Job --> AppMaster(项目经理)--> 根据切片的数量统计出需要多少个MapTask任务 --> 向ResourceManager(Yarn平台的老大)索要资源 --> 执行Map任务,先读取一个分片的数据,传递给map方法。--> map 方法不断的溢写 --> reduce 方法 --> 将统计的结果存放在磁盘上。

分开讲解版:

MapTask执行阶段

1. maptask调用FileInputFormat的getRecordReader读取分片数据
2. 每行数据读取一次,返回一个(K,V)对,K是offset(偏移量),V是一行数据
3. 将k-v对交给MapTask处理
4. 每对k-v调用一次map(K,V,context)方法,然后context.write(k,v)
5. 写出的数据交给收集器OutputCollector.collector()处理
6. 将数据写入环形缓冲区,并记录写入的起始偏移量,终止偏移量,环形缓冲区默认大小100M
7. 默认写到80%的时候要溢写到磁盘,溢写磁盘的过程中数据继续写入剩余20%
8. 溢写磁盘之前要先进行分区然后分区内进行排序
9. 默认的分区规则是hashpatitioner,即key的  hash%reduceNum
      所有的mapreduce,其实都用到了分区,如果不写,使用的是默认的分区。
      job.setNumReduceTask(3);
10. 默认的排序规则是key的字典顺序,使用的是快速排序
11. 溢写会形成多个文件,在maptask读取完一个分片数据后,先将环形缓冲区数据刷写到磁盘
12. 将数据多个溢写文件进行合并,分区内排序(外部排序===》归并排序)

关于9 的再次解释:

ReduceTask的执行流程:

1. 数据按照分区规则发送到reducetask
2. reducetask将来自多个maptask的数据进行合并,排序(外部排序===》归并排序)
3. 按照key相同分组
4. 一组数据调用一次reduce(k,iterable<v>values,context)
5. 处理后的数据交由reducetask
6. reducetask调用FileOutputFormat组件
7. FileOutputFormat组件中的write方法将数据写出。

总结

ReduceTask任务的数量是由谁决定的?
job.setNumReduceTasks(5);
是指定的,设置的几个就执行几个。
这个值不能瞎设置,要参考分区数量,加入有三个分区,ReduceTask任务就需要指定为3个。

关于片和块

假如我现在500M这样的数据,如何存储?
500M = 128M + 128M + 128M + 116M  分为四个块进行存储。
计算的时候,是按照片儿计算的,而不是块儿。
块是物理概念,一个块就是128M ,妥妥的,毋庸置疑。
片是逻辑概念,一个片大约等于一个块。

假如我现在需要计算一个300M的文件,这个时候启动多少个MapTask任务?答案是有多少个片儿,就启动多少个任务。
一个片儿约等于 一个块,但是最大可以 128M*1.1倍= 140.8
300M 
128M  启动一个Map任务进行读取
172M  172M  和   128M * 1.1 =140.8M 进行比较,如果大于 ,继续进行切割
128M  启动一个任务Map任务
剩余44M   剩余的44M 和  128M*1.1倍比较,小于这个值,剩余的44M 就单独起一个Map任务
300m的数据,分给了3个MapTask任务进行处理。

如果是260M的数据,由多少个Map任务处理?
128M   第一个任务
132M   跟 128M * 1.1 进行比较,发现小于这个值,直接一个Map任务搞定,不在启动第三个任务了。

比如班里的同学一起搬砖,每人规定搬3块,假定砖还剩4块,到某个同学了,他就直接搬完即可,没必要让另一个同学因为一块砖,而专门跑一趟。

1、什么是片,什么是块?
块是物理概念,片是逻辑概念。一般片 = 块的,但是到最后一次的时候,有可能片> 块,但是绝对不能超过块的1.1倍。
2、mapreduce 启动多少个MapTask任务?
跟片有关系,有多少个片,就启动多少个map任务。跟块儿无关。

Shuffle 过程

MapReduce的Shuffle过程指的是MapTask的后半程,以及ReduceTask的前半程,共同组成的。
从MapTask中的map方法结束,到ReduceTask中的reduce方法开始,这个中间的部分就是Shuffle。是MapReduce的核心,心脏。

map端:

1、map中的context.write方法,对外写出的时候,其实是写入到了一个环形缓冲区内(内存形式的),这个环形缓冲区大小是100M,可以通过参数设置。如果里面的数据大于80M,就开始溢写(从内存中将数据写入到磁盘上)。溢写的文件存放地址可以设置。
2、在溢写过程中,环形缓冲区不会停止工作,是会利用剩余的20%继续存入环形缓冲区的。除非是环形缓冲区的内存满了,map任务就被阻塞了。
在溢写出来的文件中,是排过序的,排序规则:快速排序算法。在排序之前,会根据分区的算法,对数据进行分区。是在内存中,先分区,在每一个分区中再排序,接着溢写到磁盘上的。
3、溢写出来的小文件需要合并为一个大文件,因为每一个MapTask只能有一份数据。就将相同的分区文件合并,并且排序(此处是归并排序)。每次合并的时候是10个小文件合并为一个大文件,进行多次合并,最终每一个分区的文件只能有一份。
假如100个小文件,需要合并几次呢?
100  每10分合并一次,第一轮:100个文件合并为了10个文件,这10个文件又合并为一个大文件,总共合并了11次。

4、将内存中的数据,溢写到磁盘上,还可以指定是否需要压缩,以及压缩的算法是什么。

reduce端:

1、reduce端根据不同的分区,拉取每个服务器上的相同的分区的数据。
reduce任务有少量复制线程,因此能够并行取得map输出。默认值是5个线程,但这个默认值可以修改设置mapreduce.reduce.shuffle. parallelcopies 属性即可。
2、如果map上的数据非常的小,该数据会拉取到reduce端的内存中,如果数据量比较大,直接拉取到reduce端的硬盘上。

环形缓冲区【嘚瑟部分】:

环形缓冲区,其实是一个数组,将数组分为两部分,分割的这个点就称之为轴心。存储KV键值对,是从左到右,类似于顺时针,因为每一个KV键值对都有对应的元数据。元数据是从轴心开始,从右向左执行。

当两者数据占用空间达到80%的时候,需要清理数组,清理完之后,轴心发生了变化。

KV键值对的元数据,

(每四个是一组,共计4组)

前面四个第一组::表示Value的起始位置,第二组:Key值的起始位置,第三组:分区信息,第四组:val的长度。这些内容称之为KV键值对的meta数据(元数据)。

Combiner

这个Combiner是一个优化的代码,对于我们最终的结果没有任何的影响。

map端产生的数据,会被拉去到reduce端进行合并,有可能map端产生的数据非常的大,不便于在网络间传输,那么有没有办法可以缩小map端的数据呢?

之前: java 1 java 1 java 1 传递给reduce

现在: java 3 传递给reduce

Combiner其实就是运行在mapTask中的reducer。 Reducer其实就是合并代码的。Combiner是作用在Map端的。

这个结果不是最终的结果,而是一个临时的小统计。 最终reduce是会将所有的map结果再次进行汇总才是我们最终想要的统计结果。

Combiner 只能用于对统计结果没有影响的场景下。
一般只用于  统计之和,统计最大值最小值的场景下。统计平均值等情况是不能用的。

在代码中如何使用?

Combiner起作用的地方:

Combiner 其实作用于两个地方,一个是环形缓冲区溢写磁盘的时候,除了分区,排序之外,还可以做合并操作,将内存中的 hello 1 hello 1 hello 1 会合并为 hello 3

第二个位置是小文件合并为MapTask的大文件的时候,会将多个 hello 的值相加 hello 19,但是这个不是最终的答案,最终答案是将多个MapTask任务中的hello 进行合并才是最终的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/146397.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

伊犁-linux root 密码忘记咋办

1 root 密码忘记了 或者reboot 重启之后在引导界面 按住 e 进入如下界面 然后按住ctrlx 进入这个界面 root 修改成功

【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版

文章目录 一、算法概念二、算法原理&#xff08;一&#xff09;感知机&#xff08;二&#xff09;多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数 3、反向传播算法 三、算法优缺点&#xff08;一&#xff09;优点&#xff08;二&#xff09;缺点 四、MLP分类任务实现…

Hive企业级调优[3]—— Explain 查看执行计划

Explain 查看执行计划 Explain 执行计划概述 EXPLAIN 命令呈现的执行计划由一系列 Stage 组成。这些 Stage 之间存在依赖关系&#xff0c;每一个 Stage 可能对应一个 MapReduce Job 或者一个文件系统的操作等。如果某 Stage 对应了一个 MapReduce Job&#xff0c;则该 Job 在 …

机器翻译之Bahdanau注意力机制在Seq2Seq中的应用

目录 1.创建 添加了Bahdanau的decoder 2. 训练 3.定义评估函数BLEU 4.预测 5.知识点个人理解 1.创建 添加了Bahdanau的decoder import torch from torch import nn import dltools#定义注意力解码器基类 class AttentionDecoder(dltools.Decoder): #继承dltools.Decoder写…

动手学深度学习(五)循环神经网络RNN

一、序列模型 1、统计工具 ①联合概率分布 假设有一个序列 x[x1,x2,…,xT]&#xff0c;我们可以把序列的联合概率分解为多个条件概率的乘积。 ②建模 f(x1​,…,xt−1​) 是一个函数&#xff0c;用于提取前 t−1个序列元素的信息。这意味着我们不需要存储每一个之前的序列元…

关于群里脱敏系统的讨论2024-09-20

群里大家讨论脱敏系统&#xff0c;傅同学&#xff1a;秦老师&#xff0c;银行数据脱敏怎么做的&#xff0c;怎么存储的&#xff1f; 采购了脱敏系统&#xff0c;一般是硬件&#xff08;厂商直接卖的一体机&#xff09;。这个系统很复杂&#xff0c;大概卖50-100万一台。 最核…

Springboot常见问题(bean找不到)

如图错误显示userMapper bean没有找到。 解决方案&#xff1a; mapper包位置有问题&#xff1a;因为SpringBoot默认的包扫描机制会扫描启动类所在的包同级文件和子包下的文件。注解问题&#xff1a; 比如没有加mapper注解 然而无论是UserMapper所在的包位置还是Mapper注解都是…

HelpLook VS GitBook,在线文档管理工具对比

在线文档管理工具在当今时代非常重要。随着数字化时代的到来&#xff0c;人们越来越依赖于电子文档来存储、共享和管理信息。无论是与团队合作还是与客户分享&#xff0c;人们都可以轻松地共享文档链接或通过设置权限来控制访问。在线文档管理工具的出现大大提高了工作效率和协…

echarts 散点图tooltip显示一个点对应多个y值

tooltip&#xff1a;显示 tooltip: {trigger: "axis",extraCssText: max-width:50px; white-space:pre-wrap,formatter: function (params) {let arr []params.forEach(v > {arr.push(v.data[1])});return params[0].data[0]":<br>["arr.toStr…

leetcode刷题3

文章目录 前言回文数1️⃣ 转成字符串2️⃣ 求出倒序数再比对 正则表达式匹配[hard]1️⃣ 动态规划 盛最多水的容器1️⃣ 遍历分类2️⃣ 双指针贪心 最长公共前缀1️⃣ 遍历&#xff08;zip解包&#xff09; 三数之和1️⃣ 双指针递归 最接近的三数之和1️⃣ 迭代一次双指针 电…

PCL addLine可视化K近邻

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff08;长期更新&#xff09; 一、概述 本文将介绍如何使用PCL库中…

Unreal Engine 5 C++: 编辑器工具编写入门(中文解释)

目录 准备工作 1.创建插件 2.修改插件设置 快速资产操作&#xff08;quick asset action) 自定义编辑器功能 0.创建编辑器button&#xff0c;测试debug message功能 大致流程 详细步骤 1.ctrlF5 launch editor 2.创建新的cpp class&#xff0c;derived from AssetAction…

基于PHP的CRM管理系统源码/客户关系管理CRM系统源码/php源码/附安装教程

源码简介&#xff1a; 这是一款基于PHP开发的CRM管理系统源码&#xff0c;全称客户关系管理CRM系统源码&#xff0c;它是由php源码开发的&#xff0c;还附带了一整套详细的安装教程哦&#xff01; 功能亮点&#xff1a; 1、公海管理神器&#xff1a;不仅能搞定公海类型&…

【自然语言处理】补充:布尔模型

【自然语言处理】补充:布尔模型 布尔检索是指针对查询的检索,布尔查询是指利用AND,OR或者NOT操作符将词项连接起来的查询,例如:信息AND检索、信息OR检索、信息AND检索AND NOT教材 Google的高级搜索/布尔查询 Google的AND—百度 “ 手机 报价 ”Google的NOT—百度 “ 手机…

关于MATLAB计算3维图的向量夹角总是不正确的问题记录

文章目录 问题描述解决方法完整代码 问题描述 因为最近在做无人机的一个项目&#xff0c;所以需要画出无人机的轨迹&#xff0c;然后再提取特征值&#xff0c;我这里在计算夹角的时候发现为什么在视觉上明明看的是钝角但是实际计算出来却是锐角的角度。 如下图所示&#xff0c…

Spring面试题合集

Spring 1.谈谈你对Spring的理解 首先Spring是一个轻量级的开源框架&#xff0c;为Java程序的开发提供了基础架构支持&#xff0c;简化了应用开发&#xff0c;让开发者专注于开发逻辑&#xff1b; 同时Spring是一个容器&#xff0c;它通过管理Bean的生命周期和依赖注入&#…

无处不在的人工智能

文章目录 引言科幻电影中的AI《她》&#xff1a;人工智能的爱情《我&#xff0c;机器人》&#xff1a;AI的觉醒 人工智能的发展现状专用人工智能的突破通用人工智能的起步 结语 引言 在21世纪的今天&#xff0c;人工智能&#xff08;AI&#xff09;已经成为推动社会发展的关键…

英集芯IP5902:集成电压可调异步升压转换充电管理功能的8位MCU芯片

英集芯IP5902是一款集成了9V异步升压转换、锂电池充电管理及负端NMOS管的8-bit MCU芯片&#xff0c;外壳采用了SOP16封装形式&#xff0c;高集成度和丰富的功能使其在应用时只需很少的外围器件&#xff0c;就能有效减小整体方案的尺寸&#xff0c;降低BOM成本&#xff0c;为小型…

dockercompose指定配置文件

dockercompose指定配置文件 文件名字必须是以下的集中形式&#xff1a; docker-compose.yaml docker-compose.yml compose.yaml compose.yml 其他名字就失败的。 一般白眉大叔都是用 compose.yaml 这个格式&#xff0c; 用习惯了。 但是我们必须知道它有几种格式都是可以…

聚焦于 Web 性能指标 TTI

在优化网站性能的过程中&#xff0c;我们经常遇到一个“为指标而优化”的困境。指标并不能真正反映用户体验&#xff0c;而应该最真实地反映用户行为。 在本节中&#xff0c;我们将研究 TTI&#xff08;Time to Interactive&#xff09;。在深入探讨这个话题之前&#xff0c;我…