整数二分算法和浮点数二分算法

整数二分算法和浮点数二分算法


二分

现实中运用到二分的就是猜数字的游戏 假如有A同学说B同学所说数的大小,B同学要在1~100中间猜中数字65,当B同学每次说的数都是范围的一半时这就算是一个二分查找的过程
在这里插入图片描述

二分查找的前提是这个数字序列要有单调性

基本步骤

初始化:

设定两个指针,left 和 right,分别指向数组的起始和末尾。

计算中间位置:

使用公式 mid = left + (right - left) / 2 或者left+right>>1计算中间位置。

比较:

如果中间位置的元素等于目标值,返回中间位置。
如果目标值小于中间位置的元素,则将 right 更新为 mid - 1,继续在左半部分查找。
如果目标值大于中间位置的元素,则将 left 更新为 mid + 1,继续在右半部分查找。

重复:

重复步骤 2 和 3,直到 left 超过 right。

结束:

如果在查找过程中未找到目标值,返回一个表示未找到的结果(如 -1 或 None)。

二分查找算法的时间复杂度是 O(log n),非常高效。

整数二分

二分的本质并不是一定要单调,而是对一个区间可以化分成两个部分,一部分一定满足条件,另一部分一定不满足,对于满足这种条件的我们可以找出两个边界点,这样的话二分算法可以寻找这个性质的边界(红色和黑色的边界都行,因为是整数二分所以两边界不重合)。
在这里插入图片描述

第一种情况(二分左半部分)

假如说有一串数字1,2,3,3,4,4,5,6,8,8我们需要找到满足小于等于3的最大情况的子序列,也就是我们需要找到最后一次出现的3,我们可以如何做呢?
我们让一个mid=(l+r+1)/2 假如说a[mid]<=3,此时if(check(mid))==true说明此时mid指向的值可能是答案,但是我们无法保证其后面还有没有答案是<=3的,所以此时应该是l=mid,假如说此时a[mid]>=3,if(check(mid))==false说明此时mid指向的是一定不满足条件的的那么此时应该是r=mid-1
在这里插入图片描述
我们继续不段重复以上操作直到l>=r时退出循环。

第二种情况(二分右半部分)

还是这个数字序列这次我们要找1,2,3,3,4,4,5,6,8,8中第一次出现3的位置,我们应该怎么做呢?
我们还是让一个mid=(l+r)/2 假如说a[mid]>=3,此时if(check(mid))==true说明此时mid指向的值可能是答案,但是我们无法保证其前面还有没有答案是>=3的,所以此时应该是r=mid,假如说此时a[mid]<=3,if(check(mid))==false说明此时mid指向的是一定不满足条件的的那么此时应该是l=mid+1

注意:第一种情况是(l+r+1)而不是(l+r)为为什么呢?

因为计算机的除法都是向下取整的所以就会出现问题,假如说此时l=r-1那么mid=(l+r)/2=(l+l+1)/2=l然后我们假如发现l还是满足条件的,那么此时就会陷入l=mid,mid=l的死循环

我们来写一道题

洛谷P2249
下面的代码是既有第一次出现,也有最后一次出现的,两种情况都写了。
代码如下:

#include <iostream>
using namespace std;const int N = 1e5 + 10; // 定义数组的最大容量,数组a最多可以存放1e5个元素
int a[N], n, m; // 定义全局变量数组a,n为数组长度,m为查询次数// check1函数用于检查a[mid]是否大于等于目标值x
bool check1(int mid, int x) {if (a[mid] >= x) {return true; // 如果a[mid]大于等于x,返回true,表示满足条件} else {return false; // 否则返回false,表示不满足条件}
}// check2函数用于检查a[mid]是否小于等于目标值x
bool check2(int mid, int x) {if (a[mid] <= x) {return true; // 如果a[mid]小于等于x,返回true,表示满足条件} else {return false; // 否则返回false,表示不满足条件}
}int main() {cin >> n >> m; // 输入数组的长度n和查询的次数mfor (int i = 1; i <= n; i++) {cin >> a[i]; // 依次输入数组a的元素}while (m--) { // 对每一次查询进行处理,m次查询int x; // 定义要查询的目标值xcin >> x; // 输入目标值x// 首先进行二分查找,寻找第一个大于等于x的位置int l = 1, r = n; // 初始化左右边界,l是左边界,r是右边界while (l < r) { // 当左边界小于右边界时,继续二分查找int mid = (l + r) >> 1; // 计算中间位置midif (check1(mid, x)) { // 如果a[mid]大于等于xr = mid; // 缩小右边界至mid} else {l = mid + 1; // 否则缩小左边界至mid+1}}// 查找完成后,检查a[l]是否等于目标值xif (a[l] == x) {cout << l << " "; // 如果a[l]等于x,输出位置l} else {cout << -1 << " "; // 如果a[l]不等于x,输出-1表示未找到}// 再进行一次二分查找,寻找最后一个小于等于x的位置l = 1, r = n; // 重新初始化左右边界while (l < r) {int mid = (l + r + 1) >> 1; // 计算中间位置mid,向上取整if (check2(mid, x)) { // 如果a[mid]小于等于xl = mid; // 缩小左边界至mid} else {r = mid - 1; // 否则缩小右边界至mid-1}}// 查找完成后,再次检查a[l]是否等于目标值xif (a[l] == x) {cout << l << " "; // 如果a[l]等于x,输出找到的最后位置l} else {cout << -1 << " "; // 如果没找到,输出-1}cout<<endl;}
}

整数二分模板

bool check(int x) {// 这里是判断x是否满足某种性质的函数,具体实现取决于实际问题// 可以根据x的值来返回true或false,用于二分查找中的判断/* ... */
}// 区间[l, r]被划分为[l, mid]和[mid + 1, r]时使用的二分查找
int bsearch_1(int l, int r) {// 二分查找的目的是在区间[l, r]中寻找满足某种性质的最小位置// l 是左边界,r 是右边界,最终返回满足性质的最小下标while (l < r) { // 当左边界小于右边界时,继续进行二分查找int mid = (l + r) >> 1; // 计算中间位置mid,使用右移操作进行快速计算,相当于 (l + r) / 2if (check(mid)) { // 如果check(mid)为true,表示mid满足性质r = mid; // 将右边界缩小到mid,因为我们要找满足性质的最小位置} else { // 否则,mid不满足性质l = mid + 1; // 将左边界缩小到mid + 1,因为mid以及它左边的值都不满足条件}}return l; // 返回最终的左边界,此时l == r,且为满足性质的最小位置
}// 区间[l, r]被划分为[l, mid - 1]和[mid, r]时使用的二分查找
int bsearch_2(int l, int r) {// 二分查找的目的是在区间[l, r]中寻找满足某种性质的最大位置// l 是左边界,r 是右边界,最终返回满足性质的最大下标while (l < r) { // 当左边界小于右边界时,继续进行二分查找int mid = (l + r + 1) >> 1; // 计算中间位置mid,并向上取整,确保mid偏向右侧if (check(mid)) { // 如果check(mid)为true,表示mid满足性质l = mid; // 将左边界缩小到mid,因为我们要找满足性质的最大位置} else { // 否则,mid不满足性质r = mid - 1; // 将右边界缩小到mid - 1,因为mid以及它右边的值都不满足条件}}return l; // 返回最终的左边界,此时l == r,且为满足性质的最大位置
}

浮点数二分算法

浮点数二分相较于整数二分更加简单因为只有一个模板,并且没有边界问题,浮点数的二分查找可以用于求解需要精确值的问题,例如求方程的解或几何问题中涉及浮点精度的求解。与整数二分查找不同,浮点数二分查找必须考虑精度问题,因为浮点数无法精确到某个具体值,所以我们需要一个精度(如 epsilon),用于判断二分查找的终止条件。

假如说我们需要找一个数x的平方等于目标值2

代码如下:

#include <iostream>
#include <cmath> // 包含abs函数,用于计算绝对值
using namespace std;// 定义一个需要使用二分法求解的函数,返回值为目标函数值
double f(double x) {// 举例:寻找函数 f(x) = x^2 - 2 的根return x * x - 2;
}int main() {double l = 0, r = 2; // 初始区间[l, r],假设根位于[0, 2]之间double eps = 1e-7;   // 定义精度eps,即当结果误差小于1e-7时停止迭代// 当区间宽度大于精度要求时,继续二分while (r - l > eps) {double mid = (l + r) / 2; // 计算中间值if (f(mid) > 0) { // 如果 f(mid) > 0,表示 mid 处的值在根的右侧r = mid; // 缩小右边界至mid} else { // 否则 f(mid) <= 0,表示 mid 处的值在根的左侧或是根l = mid; // 缩小左边界至mid}}// 输出结果,l 和 r 最终都会逼近根cout << "x ≈ " << l << endl;cout << "验证结果: f(x) = " << f(l) << endl; // 输出验证f(l)接近0
}

浮点数二分模板

// 函数原型:在浮点数区间 [l, r] 上使用二分查找,找到满足某种性质的浮点数
double bsearch_3(double l, double r)
{const double eps = 1e-6;   // eps 是精度控制的参数,当区间长度小于 eps 时停止二分查找// 1e-6 表示小数点后 6 位精度,可根据题目要求调整精度// 当区间长度大于 eps 时,继续进行二分查找while (r - l > eps){// 计算区间的中点 middouble mid = (l + r) / 2;// 调用 check 函数判断 mid 是否满足给定的性质// 假设 check(mid) 返回 true,则意味着 mid 及其右侧可能满足性质,// 因此将右区间收缩到 mid,继续在左侧区间 [l, mid] 上搜索if (check(mid)) r = mid;// 否则,mid 及其左侧不满足性质,因此我们将左区间收缩到 mid,继续在右侧区间 [mid, r] 上搜索else l = mid;}// 最后返回左边界 l(或右边界 r),此时区间已经很小,接近于精度要求的结果// 因为 l 和 r 的距离非常小,最终答案应为 l 或 r 的近似值return l;
}

整数二分算法和浮点数二分算法源代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.xdnf.cn/news/143073.html

如若内容造成侵权/违法违规/事实不符,请联系一条长河网进行投诉反馈,一经查实,立即删除!

相关文章

java--JDBC-连接池----JDBC小总结

一.连接池 1.连接池概述 目的&#xff1a;为了解决建立数据库连接耗费资源和时间很多的问题&#xff0c;提高性能。 Connection对象在JDBC使用的时候就会去创建一个对象,使用结束以后就会将这个对象给销毁了(close).每次创建和销毁对象都是耗时操作.需要使用连接池对其进行优…

类加载器详细介绍

类加载器我们要聊一个神秘而又重要的角色——Java类加载器。这家伙&#xff0c;就像是个超级英雄&#xff0c;总是在关键时刻挺身而出&#xff0c;为我们的Java程序提供强大的支持。我会尽量用简单易懂的方式来介绍它。 一 、类加载器介绍 1、类加载器是什么&#xff1f; 想象…

【python设计模式2】创建型模式1

目录 简单工厂模式 工厂方法模式 简单工厂模式 简单工厂模式不是23中设计模式中的&#xff0c;但是必须要知道。简单工厂模式不直接向客户端暴露对象创建的细节&#xff0c;而是通过一个工厂类来负责创建产品类的实例。简单工程模式的角色有&#xff1a;工厂角色、抽象产品角…

Redis(redis基础,SpringCache,SpringDataRedis)

文章目录 前言一、Redis基础1. Redis简介2. Redis下载与安装3. Redis服务启动与停止3 Redis数据类型4. Redis常用命令5. 扩展数据类型 二、在Java中操作Redis1. Spring Data Redis的使用1.1. 介绍1.2. 环境搭建1.3. 编写配置类&#xff0c;创建RedisTemplate对象1.4. 通过Redis…

Linux入门学习:git

文章目录 1. 创建仓库2. 仓库克隆3. 上传文件4. 相关问题4.1 git进程阻塞4.2 git log4.3 上传的三个步骤在做什么 本文介绍如何在Linux操作系统下简单使用git&#xff0c;对自己的代码进行云端保存。 1. 创建仓库 &#x1f539;这里演示gitee的仓库创建。 2. 仓库克隆 &…

Zookeeper 3.8.4 安装和参数解析

安装 zookeeper 之前必须先安装 JDK&#xff0c;有关Linux环境JDK可以参考我以前写的博文 1、关于Linux服务器配置java环境遇到的问题 2、Linux环境安装openJDK 3、Centos7.3云服务器上安装Nginx、MySQL、JDK、Tomcat环境 文章目录 1. zookeeper 安装2. 参数解析 1. zookeeper …

VScode快速配置c++(菜鸟版)

1.vscode是什么 Visual Stdio Code简称VS Code&#xff0c;是一款跨平台的、免费且开源的现代轻量级代码编辑器&#xff0c;支持几乎 主流开发语言的语法高亮、智能代码补全、自定义快捷键、括号匹配和颜色区分、代码片段提示、代码对比等特性&#xff0c;也拥有对git的开箱即…

[乱码]确保命令行窗口与主流集成开发环境(IDE)统一采用UTF-8编码,以规避乱码问题

文章目录 一、前言二、命令行窗口修改编码为UTF-8三、Visual Studio 2022修改编码为UTF-8四、Eclipse修改编码为UTF-8五、DevCPP修改编码为UTF-8六、Sublime Text修改编码为UTF-8七、PyCharm、IDEA、VS Code及Python自带解释器修改编码为UTF-8 一、前言 在学习的征途中&#x…

如何通过 4 种方法恢复 Mac 上删除/未保存的 Excel 文件

您花了数小时在 MacBook 上处理 Excel 工作簿&#xff0c;但现在它不见了。或者&#xff0c;当您退出 Excel 文件时&#xff0c;您无意中选择了“不保存”。这是否意味着您的所有努力都白费了&#xff1f;本文系统地解释了如何在 Mac 上恢复丢失的 Excel 文件。使用我们的 4 种…

如何在Android上实现RTSP服务器

技术背景 在Android上实现RTSP服务器确实是一个不太常见的需求&#xff0c;因为Android平台主要是为客户端应用设计的。在一些内网场景下&#xff0c;我们更希望把安卓终端或开发板&#xff0c;作为一个IPC&#xff08;网络摄像机&#xff09;一样&#xff0c;对外提供个拉流的…

Linux学习记录十四----------线程的创建和回收

文章目录 五、Linux线程1.守护进程1.1.守护进程的特点1.2.进程组1.3会话1.4创建守护进程模型 2.线程的概念3.线程的创建及相关函数3.1.创建线程‐‐pthread_create3.2.单个线程退出 --pthread_exit3.3.阻塞等待线程退出&#xff0c;获取线程退出状态--pthread_join3.4.线程分离…

无限制使用OpenAI最新o1-mini、o1-preview模型:经济高效的AI推理模型

OpenAI 最新推出的 o1 模型是该公司推理模型家族的首位成员&#xff0c;它通过创新的“思维链”训练模式&#xff0c;显著提升了逻辑推理和问题解决的能力。o1 模型在编程竞赛问题、数学奥林匹克资格赛以及物理、生物和化学问题的基准测试中表现出色&#xff0c;甚至在某些领域…

学成在线练习(HTML+CSS)

准备工作 项目目录 内部包含当前网站的所有素材&#xff0c;包含 HTML、CSS、图片、JavaScript等等 1.由于元素具有一些默认样式&#xff0c;可能是我们写网页过程中根本不需要的&#xff0c;所有我们可以在写代码之前就将其清除 base.css /* 基础公共样式&#xff1a;清除…

Tongweb7启动的时候显示要输入java参数(by lqw)

问题描述&#xff1a; 启动tongweb7的时候&#xff0c;提示要输入java参数&#xff0c;如下图所示&#xff1a; 原因&#xff1a; tongweb安装目录bin目录下的external.vmoptions文件改动&#xff0c;在# 符号后加多了一个空格。 external.vmoptions记录的是启动参数&#xf…

【读书】原则

后面的 太长了&#xff0c;而且太多了 我看作者 49年的 0多岁的老人的谆谆教诲 太多了 一下子吃不消 分为 生活原则 和 工作原则 倡导 人要以 原则而活 要做到极度透明 极度求真和极度透明&#xff1a;在软件开发中&#xff0c;对事实的执着追求和对信息的透明度是至关重要的。…

论文阅读 - SELF-REFINE: Iterative Refinement with Self-Feedback

https://arxiv.org/pdf/2303.17651 目录 Abstract Introduction 2 Iterative Refinement with SELF-REFINE Evaluation 3.1 Instantiating SELF-REFINE 3.2 Metrics 3.3 Results Abstract 与人类一样&#xff0c;大型语言模型&#xff08;LLMs&#xff09;并非总能在首次…

【刷题日记】螺旋矩阵

54. 螺旋矩阵 这个是一道模拟题&#xff0c;但我记得我大一第一次做这道题的时候真的就是纯按步骤模拟&#xff0c;没有对代码就行优化&#xff0c;导致代码写的很臃肿。 有这么几个地方可以改进。 看题目可以知道最终的结果一定是rows*cols个结点,所以只需要遍历rows*cols次…

java十进制码、六进制码和字符码的转换

一、字符转换为ASCII码&#xff1a; int i(int)1; 二、ASCII码转换为字符&#xff1a; char ch (char)40; 三、十六进制码转换为字符&#xff1a; char charValue (char)\u0040; package week3;public class check_point4_8 {public static void main(String[] args) {S…

Java 性能调优:优化 GC 线程设置

垃圾回收器使用一组称为 GC 线程的线程来执行回收工作。有时 JVM 可能会分配过多或过少的 GC 线程。本文将讨论 JVM 为什么会出现这种情况、其影响以及可能的解决方案。 1 咋查找应用程序的 GC 线程数量 进行线程转储分析来确定应用程序的 GC 线程数量&#xff1a; 从生产服…

【算法思想·二叉搜索树】基操篇

本文参考labuladong算法笔记[二叉搜索树心法&#xff08;基操篇&#xff09; | labuladong 的算法笔记] 1、概述 我们前文 东哥带你刷二叉搜索树&#xff08;特性篇&#xff09; 介绍了 BST 的基本特性&#xff0c;还利用二叉搜索树「中序遍历有序」的特性来解决了几道题目&am…